

OBJECT-ORIENTED
MODELLING FOR

SCIENTIFIC COMPUTING

Object-oriented Modelling for
Scientific Computing

Euan Russano and Elaine Ferreira Avelino

www.bibliotex.com

BIBLIOTEX
Digital Library

http://www.bibliotex.com

Object-oriented Modelling for Scientific Computing
Euan Russano and Elaine Ferreira Avelino

www.bibliotex.com
email: info@bibliotex.com

e-book Edition 2018

ISBN: 978-1-98460-180-3 (e-book)

This book contains information obtained from highly regarded resources. Reprinted material
sources are indicated. Copyright for individual articles remains with the authors as indicated and
published under Creative Commons License. A Wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and views articulated in the chapters are those
of the individual contributors, and not necessarily those of the editors or publishers. Editors or
publishers are not responsible for the accuracy of the information in the published chapters or
consequences of their use. The publisher assumes no responsibility for any damage or griev-
ance to the persons or property arising out of the use of any materials, instructions, methods or
thoughts in the book. The editors and the publisher have attempted to trace the copyright holders
of all material reproduced in this publication and apologize to copyright holders if permission has
not been obtained. If any copyright holder has not been acknowledged, please write to us so we
may rectify.

Notice: Registered trademark of products or corporate names are used only for explanation and
identification without intent of infringement.

© 2018 Arcler Press

In Collaboration with Arcler Press. Originally Published in printed book format by Arcler Press
with ISBN 978-1-77361-281-2

http://www.bibliotex.com
mailto:info@bibliotex.com

About the Authors

Euan Russano
Euan Russano was born in Minas Gerais, Brazil. He is a Chemical Engineer since 2012
by the Rural University of Rio de Janeiro (UFRRJ). He obtained his Msc. in 2014 at
UFRRJ, in the area of Chemical Engineering, with specializazion in Process Control.
In 2014, Russano began to develop his PhD at the University Duisburg-Essen (UDE) in
the field of Water Science. His carrer was initiated in a Petrobras project in the Polymers
Laboratory, at UFRRJ. From 2012 to 2014 he worked in the Fluids Flow Laboratory
(Petrobras/ UFRRJ) with oil well pressure control. Since 2014 he works as an research
assistant at the University of Duisburg-Essen, with water systems identification and
control.

Elaine Ferreira Avelino
Elaine Ferreira Avelino was born in Rio de Janeiro, Brazil. She obtained her Bsc
in Forestry Engineering at the Rural University of Rio de Janeiro (UFRRJ) in 2007
and Msc. in 2012 at UFRRJ, in the area of Forestry and Environmental Sciences,
with specializazion in Wood Technology. She started her career in the Secretary for
Environment of Rio de Janeiro, with Urban and Environmental Planning. Elaine
was a professor of Zoology, Enthomology, Forestry Parasithology and Introduction
to Research at the Pitagoras University. Since 2013 she works as an international
consultant for forest management and environmental licensing.

 List of Abbreviations ..ix

 List of Figures ..xi

 List of Tables ...xv

 Preface..xvii

Section 1 Concepts on Object-Oriented Programming ... 1

•  Introduction ...1

•  Principles and Terminology ..9

Section 2 Scientific Computing principles .. 17

•  Introduction to Scientific Computing ...17

•  Common Mathematical Problems ..19

Section 3 Object-Oriented Development and Programming 27

•  Object-Oriented Project ..27

•  Introduction to Programming ...30

•  Unified Modelling Language ..34

•  C++ ...55

•  Matlab ...84

•  Java ..123

•  Python ...164

•  Modelica ...197

Section 4 General Applications in Scientific Problems ... 207

•  An Object-Oriented Approach for Function Differentiation  
in Python ...207

•  Development of a Simple Object Oriented Simulator  
of Dynamical Sytems ...211

Contents

•  Using the Openmdao for Model Development and Simulation ........232

•  Further Reading ...259

 References ... 263

 Index ... 267

•  Tank System Modelling..239

List of Abbreviations

GUI _ Graphical User Interface
IDE – Interactive Development Environment
IDLE – Integrated Development Environment
MATLAB – Matrix Laboratory
ODE – Ordinary Differential Equation
OOP – Object-Oriented Programming
PDE – Partial Differential Equation
UML – Unified Modelling Language

Figure 1 Topology of first-generation programming languages.
Figure 2 Topology of second-generation programming languages.
Figure 3 Topology of third-generation programming languages.
Figure 4 Topology of object-oriented and object-based programming languages
Figure 5 The complexity of a system depends on the observer intention.
Figure 6 Hierarchic Relationship of a complex system.
Figure 7 Example of Encapsulation – Car model
Figure 8 The Daisy Class as an example of Multiple Inheritance.
Figure 9 The Car Superclass as an example of Multiple Subclasses.
Figure 10 Function y = sin(x).
Figure 11 “Unknown“ function values at x = 0 and x = 1.
Figure 12 Different assumptions made on the “unknown” function y = sin(x).
Figure 13 Difference between interpolated value and real value of the function y =

sin(x) between x = 0 and x = 1.
Figure 14 Difference between interpolated value and real value of the function y =

sin(x) between x = 0 and x = 2.
Figure 15 The Class thing representation in UML.
Figure 16 The Interface thing representation in UML.
Figure 17 The Collaboration thing representation in UML.
Figure 18 Use Case representation in UML.
Figure 19 Component block representation in UML.
Figure 20 Node block representation in UML.
Figure 21 Interaction block representation in UML.
Figure 22 State Machine block representation in UML.
Figure 23 Package block representation in UML.
Figure 24 Note block representation in UML.
Figure 25 Dependency block representation in UML.

List of Figures

xii

Figure 26 Association representation in UML.
Figure 27 Generalization block in UML.
Figure 28 Realization block in UML representation.
Figure 29 Notation of class diagram.
Figure 30 Representation of the Box class diagram.
Figure 31 Class diagram (left) and object diagram (right) in UML.
Figure 32 Example of a use case diagram (Simulator).
Figure 33 Use case diagram of an elevator service. (Source: http://www.web-feats.

com)
Figure 34 State representation in UML.
Figure 35 Initial state representation in UML.
Figure 36 Final state representation in UML.
Figure 37 Component example in UML.
Figure 38 Example of Component diagram in OOP for scientific computing.
Figure 39 Flow diagram.
Figure 40 MATLAB default window.
Figure 41 Simple storage boxes network.
Figure 42 Balance of the three boxes network.
Figure 43 Fluxes of the three boxes network.
Figure 44 Balances of the three boxes network example – Object-Oriented

implementation.
Figure 45 Fluxes between the three boxes – Object-Oriented implementation.
Figure 46 NetBeans screenshot. Source: http://wiki.netbeans.org/NetbeansUML
Figure 47 – Eclipse screenshor. Source: http://www.eclipse.org/screenshots/#.
Figure 48 IntelliJ IDEA Community Edition screenshot. Source: https://mhreviews.

files.wordpress.com.
Figure 49 Android Studio screenshot. Source: https://img.utdstc.com.
Figure 50 BlueJ screenshot. Source: https://bluej.soft32.com/
Figure 51 DrJava screenshot. Source: http://www.drjava.org.
Figure 52 Initial window of DrJava (Windows platform).
Figure 53 Exampe of inheritance of classes.
Figure 54 Graph of the function y = 2*x + 1.
Figure 55 Plot of the function y = x2-9
Figure 56 Plot of the function .
Figure 57 IDLEX window.
Figure 58 IDLEX as a calculator.

xiii

Figure 59 A Class for the uniformly accelerated motion.
Figure 60 Result for the simulation of the simple LTISystem model.
Figure 61 Graphical representation of the LTI System using annotation.
Figure 62 Testing the numdiff program
Figure 63 Result for the simulation of na discrete model.
Figure 64 Results for the dicrete model with 2 states.
Figure 65 Ecological dynamics of the predator prey model.
Figure 66 Directory tree for the simulator Project – Version 0.1
Figure 67 Simulation of predator-prey model – First attemp.
Figure 68 Simulation of predator-prey model. Second attemp
Figure 69 x-y state phase diagram for predator prey model.
Figure 70 Results for the prey-predator model with three populations.
Figure 71 Tank system representation.
Figure 72 Rearranged Tank system.

Table 1 – Primitive data types for C++

List of Tables

The main audience of this book are mathematics, biology, physics and engineering
students interested in acquiring more knowledge in scientific computing by using
object-oriented programming (OOP).
OOP is present in many different programming languages. However, not all of them can
be easily used in scientific computing. Therefore, in this book we show the application
of OOP technique using C++, Java, Python and Matlab. These languages stand among
the most popular ones to solve scientific problems, especially the numerical ones.
The whole book is divided into 4 main sections.
Section 1 gives a brief description of the basic concepts of OOP, terminology and the
history of its development. The second section introduces scientific computing and
some simple algorithms in numerical methods are presented, which lies among the
most common types of problems that the scientist may face.
Section 3 encompasses the major part of the book and contains the practical techniques
for the development of object-oriented software solutions. The first tool presented
is the Unified Modelling Language (UML), which is not a programming language,
but a tool to develop the concepts in software, documenting it and making easier the
implementation of necessary algorithms and methods, to satisfy the main objectives of
the software.
The second tool presented is the C++ programming language. In the chapter a
introduction to the basic features of the language is given, and an introduction to the
object-oriented features of it. The same guideline is followed for Matlab, Java, Python
and Modelica.
The Section 4 shows practical applications of scientific computing using object-
oriented approach to solve problems. Specifically, it is presented the application of
this technique to model the famous Predator-Prey model, or Lotka-Volterra model,
which represents the relationship between a prey and its predator in a system under
certain constraints. The second application is the description of the OpenMDAO tool
for modelling and analysis of mathematical problems. The last application consists into
modelling a system of tanks, starting from a functional programming and upgrading it
until it reaches an object-oriented approach.
Finally, it provides some suggestions of further reading. After, the references used along
the book are presented.

Author

Preface

INTRODUCTION

The history behind the object-oriented programming
The evolution of programming languages can be backtracked to the
middle 50’s, when it started to be developed the so called first-generation
languages. Some of which can be mentioned:

• FORTRAN I
• ALGOL 58
• Flowmatic
• IPV V
These first programming languages were used primarily for scientific

and engineering computing. Because of that, the syntax and vocabulary of
the languages are almost only mathematical expressions, thus providing
already an advantage for programmers from these epoch, freeing them
from the intricacies of assembly or machine language.

CONCEPTS ON
OBJECT-ORIENTED
PROGRAMMING

1
SECTION

Object-oriented Modelling for Scientific Computing2

Figure 1: Topology of first-generation programming languages.

The second-generation languages dates from the years 1959-1961,
and their focus were on algorithm abstraction. Some that may be
mentioned are:

• FORTRAN II
• ALGOL 60
• COBOL
• Lisp
FORTRAN II shift the focus from mathematical expressions to

incorporating subroutines, and to have a separate compilation. ALGOL
60 introduced programming with block structures and different data
types. COBOL brought the feature of data description and file handling.
Lisp had as special features the capabilities of list processing, pointers
and garbage collection.

As an example, to calculate the area of a triangle using FORTRAN II,
the following program can be used:

C AREA OF A TRIANGLE - HERON’S FORMULA
C INPUT - CARD READER UNIT 5, INTEGER INPUT
C OUTPUT - LINE PRINTER UNIT 6, REAL OUTPUT
C INPUT ERROR DISPLAY ERROR OUTPUT CODE 1 IN JOB

CONTROL LISTING

Concepts on Object-Oriented Programming 3

 INTEGER Q,W,E
 READ(5,501) Q,W,E
 501 FORMAT(3I5)
 IF(Q.EQ.0 .OR. W.EQ.0 .OR. E.EQ.0) STOP 1
 S = (Q + W + E) / 2.0
 AREA = SQRT(S * (S - Q) * (S - W) * (S - E))
 WRITE(6,601) Q,W,E,AREA
 601 FORMAT(4H Q= ,I5,5H W= ,I5,5H E= ,I5,8H AREA= ,F10.2,
 $13H SQUARE UNITS)
 STOP
 END

Which is, although simple, not very easy to understand. The important
point is that, the computer at that time had a special boost in performance,
and the economics of computer industry meant that the solutions of more
problems could be addressed using these available resources. That was
especially true for the business applications.

The focus shifted from the use of programs to solve mathematical
problems, to telling the computer what to do. As instance: read a file,
write one line, close the file, show a report.

Figure 2: Topology of second-generation programming languages.

The introduction of transistors as a brand new technology, as well as
the integrated circuit made the prices of computers to drop significantly,

Object-oriented Modelling for Scientific Computing4

while the processing capacity grown almost exponentially. With these
factor, by the middle to the late 60’s, a third generation of programming
languages rise, allowing data abstraction. Some examples of these new
languages are:

• PL/I
• ALGOL 68
• Pascal
• Simula
PL/I was a mixture of FORTRAN, ALGOL and COBOL, incorporating

the features of each of them in a single language. Simula was the first one
to bring the concept of classes and data abstraction.

Figure 3: Topology of third-generation programming languages.

The size and complexity of programs started to become bigger
and bigger, revealing the inadequacies of earlier languages. At this
time programmers started to see that an object-oriented approach of
programming could deal much easier with highly complex systems, by
partitioning them in smaller parts. Some languages that worth mentioning
are:

• Smalltalk 80
• C++
• Ada83
Smalltalk 80 was one of the first pure object-oriented programming

languages. Nevertheless, others also incorporated that feature, such as

Concepts on Object-Oriented Programming 5

C++ and Ada83. The boom on developments at this direction dates from
1980-1990, and it drastically increased the productivity and the ability of
component reuse.

From this time on, a diversity of languages were developed with
focus on object-oriented programming, and that`s our focus on this book.

Figure 4: Topology of object-oriented and object-based programming languag-
es

Outlook on Complexity of Systems
Is it possible to say that a system is, in its essence, simple? That is a very
strict affirmative, for even a single cell, or the smallest amount of sand
possess an enormous quantity of atoms, protons, neutrons, electrons, not
to mention elements of even smaller sizes and consequently with greater
quantity.

Nonetheless, the way that a system is seen by different users, or
observers, and the features of that system which are important to them,
may make it possible to see a system in a very simple way. For example,

Object-oriented Modelling for Scientific Computing6

a cat in the eyes of a child may be simply a pet, which one can input some
feed, and one can play with it. On the other hand, the same cat in the eyes
of a veterinary surgeon is seen in a very different manner. The surgeon
has noted that the cat suffers from kidney stones, and a surgery may be
necessary, which involves knowing how the cat’s heart will support the
surgery, as well as if some other organs may need to be taken special care
during the surgery.

Or just imagine a “simple” water tank. In the eyes of an amateur
swimmer, it is important to have enough width or length so he can
practice the sport, and also enough height so one can also dive. A strict
value for those are not well defined, but depends also on the size and
the abilities of the swimmer. On the other hand, in the eyes of a process
engineer, he may have planned to use the same tank in a polymerization
process. It is important that the water tank can be closed on the top, so it
can admit some pressure. It is also important to rightly locate the input
and output pipes, so after the polymerization process, the product can
be safely removed to the full and new material can be admitted. Besides
that, it is necessary to choose the right mixing paddle to the dimensions
of the tank, which have to be well known, not only because of that but
also to know the residence time of the material. And that is just a brief
summary…

Swimmer Engineer

It is large
enough for

me to
swim!

This tank is X
meters high, Y

meters long and
Z meters deep.

The particle
residence time is
T minutes. I can

use it!

Figure 5: The complexity of a system depends on the observer intention.

This illustrates that, for different users with different intentions, a
system can be interpreted in a simple, or in a complex way.

Concepts on Object-Oriented Programming 7

Characteristics of a Complex System
Systems have different levels of complexity. Nevertheless, Booch et al.
(2007) mention five attributes that are common to all complex systems:

Hierarchic Structure
It is logical to think that a big, complex system can be decomposed in
smaller, simpler parts. Interpreting each of these parts as a component
itself helps one to understand the big picture.

For instance, the water tank mentioned above can be divided in
simpler, smaller components as shown below:

Water tank

Water
Tank

H2O H2O H2O

Molecules

H O

Atoms

Bottom Lateral

Figure 6: Hierarchic Relationship of a complex system.

One can realize that every system can be decomposed in simpler
subsystems, and every system is part of a larger system, whereas the
behavior of systems depends on it parts and the relationship among them.

Relative Primitives
Down to what component a complex system can be seen? The choice of
the primitive components of a system depends on the observer or user
and it is highly arbitrary.

Object-oriented Modelling for Scientific Computing8

For the water tank above, a swimmer may only be interested in
knowing the size of the tank and the water temperature, so he can practice
some sport. On the other side, a chemist who wants to use the water tank
to do some experiments may want to know what components are inside
the water, as well as if the material that forms the tank will react with the
product he wants to test. This can go to the level of molecules and ions,
their concentration and interaction. Another person may just want to use
the water tank to have drinkable water, so the material or dimensions of
the water tank are useless and just the volume of water and the substances
mixed with it are important for him.

Separation of Concerns
A system’s dynamics is defined by its inter- and intracomponent linkage.
The latter is assumed to be much more stronger than the first, what makes
it possible for an observer to analyze a system, with a clear definition
of how to separate its parts. The interaction inside the components are
called high frequency dynamics, and they involve the structure of the
component, while the interaction between components is referred to as
low-frequency dynamics.

Common Patterns
A complex system is not formed only by a variety of different subsystems.
Rather, it is composed of patterns, or subsystems which are of the same
kind, but they are arranged in a variety of combinations and arrangements.
For instance, the water in the tank above is composed of molecules that
have 2 atoms of hydrogen for 1 atom of oxygen. These patterns are
repeated billions of billions of billions of times until the whole volume of
water is formed. Of course, the water may also be contaminated by other
substances, but even those are formed by patterns of the same atoms,
which are all formed by protons, neutrons, electrons, etc.

Stable Intermediate Forms
Complex systems change over time. Nonetheless, these changes can be
much easier understand if the system can be seen in stable intermediate
forms. According Gall. (1986), working complex systems must have
evolved from a simpler system that also works. A complex system
designed from scratch is bound to fail.

Concepts on Object-Oriented Programming 9

As such systems evolve, complex components become primitive of
even more complex systems, as in biological systems, which are formed
by cells, highly complex systems.

PRINCIPLES AND TERMINOLOGY

Definition of Class and Object
The words object and class are broadly used in programming area, and
vendors of database, CASE tools and programming languages tend to use
it as a term to attract clients. Many of these does not really knows what
the word OO (object-oriented) means.

According Yourdon (1994), a system built with object-oriented
methods is one whose components are encapsulated chunks of data
and function, which can inherit attributes and behavior from other such
components, and whose components communicate via messages with
one another.

Regarding Classes, they can be defined as a template, some code
which is used as a basis to create objects, providing initial values of
states, default components common to the derived objects, and defining
the behavior of the derived objects.

The objects are basically things, which behaves according the
instructions of the class that it belongs. For instance, a dog is an “object”,
or instance of a class Mammals. The same apply to cats, horses, whales
and so on. By this example, one can see that there are levels of abstraction
regarding classes and objects. The objects pertaining to a certain class
may have different behavior because they actually are directly derived
from subclasses of the main class.

Firesmith (1993) defines object as a software abstraction that models
all relevant aspects of a single tangible or conceptual entity or think from
the application domain or solution space. An object is one, or the primary
software entities in an object oriented application, typically corresponds
to a software module, and consists of a set of related attribute types,
messages, exceptions, operations and optional component objects.

The object-oriented programming emanates from the programming
language Simula, which was a tool developed to simulate processes of the

Object-oriented Modelling for Scientific Computing10

real word. In this sense, the objects in Simula really were representations
of real things in the world.

Nevertheless, it was only when the programming language Smalltalk
was introduced, that the term object-oriented programming came forth.
The whole language was building around the concept of classes and
objects, as the authors were fascinated by this technique. The Smalltalk
language considers everything an object, from one number to a very
complex system. In essence, it sees an object as something which can
have some states, and which can perform some actions. In summary:

Object = state + behavior

Definition of Abstraction
The abstraction concept derives from the necessity of interpreting a
complex system in a simpler way, by neglecting dynamics or characteristics
which are not predominant in the system. Virtually, any piece of software
incorporates some level of abstraction, because the programmer hides all
but the relevant data to define the object, reducing thus the complexity of
the system and increasing efficiency.

Abstraction can be applied with two different focuses:
• Control abstraction
• Data abstraction
The first (Control abstraction) refers to the interpretation of the actions

in a meaningful and simple manner, incorporating important actions and
neglecting those who has little or no effect in the system being modelled.

The second (Data abstraction) refers to way data is structured, so
each data has its own type according the programmer necessity. As an
example, a list can be seen as an abstraction of a sequence of items,
indexed by their position.

As a general example, consider the following model of a car:
#---
Model Car
 Properties
 Integer wheels = 4;
 Integer seats = 2;

Concepts on Object-Oriented Programming 11

End Car;
#---

What the above model describes about the car? Even someone without
knowledge about programming can see that the car model has two
specifications: wheels (an integer, i.e 1,2,3,…) specified as four and seats,
also an integer, specified as one. But what is the color of the car? What is
the horse-power? The model does not say, because the programmer has
decided that, for the system under analysis, it only important to know the
number of wheels of the car and the number of seats on it. This shows
how abstraction concept can be used to simplify a system up to the level
which is desired according the problem under analysis.

We can also provide one example of an abstraction of a dynamic
model. Consider also a model of a car, but of the following format:
#---
Model Car
 Properties
 Float position
 Methods
 Function drive_car (time = 10.0, velocity = 1.0)
 position = position + velocity * time;
 End drive_car
End Car;
#---

In this case, the class car has one single attribute: the position of it.
But a function, or action was incorporated, the drive_car function, which
is used to change the position of the car, by inputting the time of driving,
as well as the average velocity of the car. The new position is calculated
with the simple equation for uniform movement:
s = s0 + v0 * t
Where:
s – final position
s0 – initial position
v0 – average velocity
t – time

Object-oriented Modelling for Scientific Computing12

As in the previous case, one does know what is the model of the
car, the color, how big it is. That is because these characteristics are not
relevant, according the programmer criteria, to represent the system
under interest.

Definition of Encapsulation
An encapsulated information is something that is not clearly seen in
the implementation of the object. It is somewhere hidden , so the other
components of the system are not aware of it, or can not use it unless it is
specified so. In the practical sense, it means that the properties, methods
and any other characteristic of the object are packaged together.

This is a huge advantage in object-oriented modelling, for the
programmer can control which piece of information in an object will
communicate with which piece of other object. This is usually done in
the form of sent messages that are sent to specified methods or function
of the receiving object.

As an example, imagine a car model. As driver gives as input if the
car is on or off, the Steering wheel angle, the accelerator, the brake and
the car gear. So a simple representation of this model would be:
#---
Model Car
 Properties
 Boolean engine
 Float Steer_wheel_angle
 Float accelerator
 Float brake
 Float gear
 Methods
 Function turn_on
 Function turn_off
 Function car_drive
End Car;
#---

When the driver turns the car engine on (by setting the Boolean
engine to TRUE), then the function turn_on calls another model which

Concepts on Object-Oriented Programming 13

is the start_engine model. The start_engine model represents just, as the
name reveals, the start engine motor, which is responsible of admitting
fuel and air into the motor and compressing it. A simple representation of
this model can be stated as:
#---
Model Start_Engine
 Properties
 Boolean turn_on
 Methods
 Function admit_air
 Function admit_fuel
 Function compress
End Car;
#---

This model has a single property, turn_on (TRUE or FALSE), which
is called by the turn_on function of the car, in order to run its functions,
which are to admit air into the motor, admit the fuel and compress it, and
after combustion the motor can work by itself, and the start_engine can
be turned off.

Once the motor has started, it is time to accelerate so the car can
move. This is done by the function car_drive in the car model, which
may call other objects such as engine, differential, wheels, and so on. An
encapsulated, object-oriented representation of this car model would be:

class Car

turn_on
turn_off
car_drive

class Wheel
class Wheel

class Wheelclass Wheel

Class Motor

Class
Start_Engine

Class
Transmission

Class Brake

Figure 7: Example of Encapsulation – Car model

Object-oriented Modelling for Scientific Computing14

Each different object is not aware of what the other one is doing, but
they receive or send tasks according the definitions on its structure.

Definition of Inheritance
Inheritance is the principle that an object incorporates all or part of the
definition of another class, usually referred to as superclass or parent-
class. This creates a hierarchy of structures, where some objects inherits
from one superclass while other are derived from another class, and so
on. The classes in this hierarchy are referred to as generalized/specialized
structures. That is because, as we search for common characteristics
of different objects, we arrive at some moment in a concept which is
common to a variety of objects of interest.

These generalized, common objects can also produce derived objects
by combination, which defines a multiple inheritance. For instance, a
class Daisy can be defined as a plant, as well as a Flower, depending
on the intention of the user. To define this class, one can use multiple
inheritance concept.

Flower Plant

Daisy

Figure 8: The Daisy Class as an example of Multiple Inheritance.

On the other hand, on single superclass can also generate multiple
subclasses. For example, consider the different types of car: convertible
car, mini SUV, urban car, sport car. All of this type of cars can be a
class derived from a superclass Car, which describes the basic features
common to all of these models, such as the fact of having 4 wheels, one
steering wheel, and so on.

Concepts on Object-Oriented Programming 15

Car

Sport
Car

SUV
Urban

car

Figure 9: The Car Superclass as an example of Multiple Subclasses.

This concept makes it easier when programming, for it avoids the
repetition of code already written. It also makes easier to analyze a
system, for its is know what is common to each of objects on it, and what
is different, by relating to their hierarchy

INTRODUCTION TO SCIENTIFIC
COMPUTING

Scientific computing is a tool used to solve a variety of problems in
science and engineering fields. The basis of this process comes from a
knowledge over the phenomenon under study, known as model. Knowing
how the phenomenon behaves (model) and how to develop an algorithm
able to do predictions of the phenomenon is the basis of the scientific
computing.

According Bindel and Goodman (2009), the challenge of scientific
computing draws of mathematics and computer science, being necessary
discipline and practice in order to overcome them. The same problem
can be solved using different algorithms and the testing of such involves
breaking it procedure by procedure. Accuracy, stability, robustness
and performance are some of the factors considered when developing
algorithms and programs.

There are nowadays a variety of tools available for developing such
algorithms. Programming environment and debuggers, visualization,

SCIENTIFIC COMPUTING
PRINCIPLES2

SECTION

Object-oriented Modelling for Scientific Computing18

profiling, pre-compiled libraries are some of these which helps one to
create high-quality software solutions.

One important feature regarding scientific computing is that, in most
problems involving continuous mathematics, as in derivatives, integrals
or nonlinearities, the solution of a problem will not be exact using a
finite number of steps. Therefore, an iterative process is required, which
will converge to a solution with reasonable accuracy, depending on the
admissible error. According Heath (2013), the challenge is to find rapidly
convergent iterative algorithms, which will produce accurate resulting
approximations. In some cases, the iterative algorithm may be so fast
that it may even be preferable over analytical methods for linear systems
which will require more computational resources.

The solution procedure using scientific computing usually involves
the following steps:

• Development of a mathematical model of the system under
investigation

• Development of the algorithms necessary to solve the problem
numerically

• Implementation of the algorithm in a computer software, or
development of a computer software to solve the problem

• Run the simulation
• Store the results of the simulation
• Represent such results in a way they can be analyzed and

validated
• If the validation fails, repeat all or some of the steps above

until the validation succeeds
Computational resources are not infinite, so the seeking of a solution

to a mathematical problem usually involves fitting this problem to the
availability of resources. This means simplifying a problem, translating
a difficult and complicated system into a simpler one which provides the
same solution, or a closely related one. According Heath (2013), some
procedures for simplifying mathematical problems involve:

• Replacement of infinite-dimensional spaces into finite-
dimensional spaces

Scientific Computing Principles 19

• Replacement of continuous terms with discrete ones, such as
the replacement of integrals, derivatives by finite sums and
finite differences.

• Replace differential equations with algebraic equations
• Replace non-linear problems with linear ones
• Replace high-order systems with low-order systems
• Simplify complicated functions with simpler ones

COMMON MATHEMATICAL PROBLEMS

System of Linear Equations
The Linear systems of equations are widely spread in scientific problems
in areas such as biology, chemistry, physics, and engineering. The
fundamental problem involving systems of linear equations is to find
the value of a set of unknown variables given a set of linear equations.
If the system of equations is the same as the number of variables then
the system has a unique solution for the variables. In the case that the
number of equations is less than the number of variables, then the system
has many different solutions. If the number of equations is higher than
the number of variables, the system has no solution, but approximations
can be found.

A linear system of equations can be mathematically expressed
according the following equations:

1,1 1 1,2 2 1, 1 + +…+ =n na x a x a x b

2,1 1 2,2 2 2, 2 + +…+ =n na x a x a x b



,1 1 ,2 2 , + +…+ =n n n n n na x a x a x b

With n unknowns 1,2,..nx .The same system can be better represented
in the matrix form as follows:

Object-oriented Modelling for Scientific Computing20

1,1 1,2 1, 1 1

2,1 2,2 2, 2 2

,1 ,2 ,

…     
     …     =
     
     …     

   
 

n

n

n n n n n n

a a a x b

a a a x b

a a a x b

Or in a compact form:
. =A X B

Where A is the n x n matrix of coefficients, B is the right-hand side
vector of length n , and X if the solution vector of length n .

To analyze how linear systems behave, consider a simple 2x2 system
of linear equations:

1,1 1,2 1 1

2,1 2,2 2 2

     

=     
    

a a x b

a a x b

If all the values of the coefficient matrix are different from zero, the
system can be rewritten in the form of the following two equations:

1,1
2 1 1

1,2

 =− +
a

x x b
a

2,1
2 1 2

2,2

= − +
a

x x b
a

Which defines the slope-intercept equations of two lines in a plane.

The set of solutions (values for 1x and 2x) consists of all points in the plane
where the two lines intersect. For this case, there are three possibilities:

• A unique solution – the lines intersect at a single point in space.
• No solution – the lines are parallel, therefore there is no

intersection.
• Infinitely many solutions – the lines are parallel with the same

intercept.
These conditions hold for any type of linear system of equations,

independent on the size of matrixes. A system is called nonsingular if
it has one and only one solution. On the other hand, it is referred to as
singular if it has no solution or an infinite set of solutions.

Scientific Computing Principles 21

To check if the system is nonsingular, the matrix A must satisfy any
of the following conditions:

• A has an inverse, i.e, a matrix denoted 1−A exists, such that
the following relation holds 1− =A A I (identity matrix).

• ()det 0≠A

•
() =rank A n the rank of the matrix A is the maximum number

of linearly independent rows or columns it possesses.

• For any vector 0≠y , 0≠Ay

If any of the conditions above hold, then the system is no trivial, and
it either possess no solution or an infinite set of solutions.

Solution using Cramer Rule
According the Cramer’s rule, the value of the unknowns in a linear
system is given by fractions which the denominator is the determinant
of the coefficient matrix and the numerator is the determinant of the
coefficient matrix replacing each column by the right-hand side vector
of the system.

We exemplify the application by solving the following system of
linear equations:

1

2

3

1 2 3 10
1 2 4 11

5 6 1 28

     
     − − − = −     
          

x

x

x

The first step to find the values of 1x , 2x and 3x , is to find the
determinant of the coefficient matrix:

()
1 2 3

det 1 2 4 4
5 6 1

  
  = − − − =−  
    

A det

The next steps consist on calculating the determinant of the coefficient
matrix replacing each column of it by the right-hand side vector. Replacing
the columns, one can find the following determinants:

Object-oriented Modelling for Scientific Computing22

()1

10 2 3
det 11 2 4 12

28 6 1

  
  = − − − =−  
    

Ax det

()2

1 10 3
det 1 11 4 8

5 28 1

  
  = − − − =−  
    

Ax det

()3

1 2 10
det 1 2 11 4

5 6 28

  
  = − − − =−  
    

Ax det

The last step consists on obtaining the value for each unknown

variable in the respective order by dividing the determinant of 1Ax ,

2Ax and 3Ax by the determinant of A . By doing this one obtains the
following values for the unknowns:

1
1

det 12 3
det 4

−
= = =

−
A

x
Ax

2
2

det 8 2
det 4

−
= = =

−
A

x
Ax

3
3

det 4 1
det 4

−
= = =

−
A

x
Ax

Curve Fitting
Curve fitting consists in methods used to approximate an unknown
function using some sort of algorithm which derives from the hypothesis
that the system being fitted behaves according this algorithm (at least in
the region under analysis). There are two common methods for curve
fitting:

• Interpolation
• Least squares
Interpolation consists on approximating an unknown function using

a known one in some point in space contained by known values of the
unknown function. For instance, consider a system governed by the

Scientific Computing Principles 23

following equation, where x are known values given as input to the
system and y the output of the function:

()sin=y x

If one visualizes the values of y inside the range of x between 0 and
3, the following figure can be produced.

Figure 1: Function y = sin(x).

As already mentioned, the interpolation method is useful to found
values at unknown regions of the function located between known values.
The most simple interpolation algorithm consists into the linear one. A
linear proportion is used to found the unknown value of the function,
which can be stated as:

1 2 1

1 2 1

 − −
=

− −
y y y y

x x x x

Where y is the unknown value of the function at the point x . The

values 1y and 2y are known values of the function at the points 1x and

2x respectively. Rearranging the above equation to make y explicit:

() 2 1
1 1

2 1

 −
= + −

−
y y

y y x x
x x

The accuracy of this algorithm for non-linear functions depends on
the nonlinearity of the function and the range being interpolated. For
instance, consider that the only known values for the function previously

Object-oriented Modelling for Scientific Computing24

mentioned (()sin=y x) are for x = 0 and x = 1. The following figure can
be used to represent this system.

Figure 2: “Unknown“function values at x = 0 and x = 1.

At first different assumptions can be made regarding the behavior of
the function between these two points. It may behave as a linear system,
a parabolic one or an exponential one, as shown in the figures below.

Figure 3: Different assumptions made on the “unknown” function y = sin(x).

Performing the linear interpolation using the previously described
algorithm, one can obtain the value for y:

Scientific Computing Principles 25

() ()
()

0.8414 0
0 0.5 0 0.4207

1 0
−

= + − =
−

y

The following figure provides a comparison between the interpolated
value and the real value of the function (y = sin(x)).

Figure 4: Difference between interpolated value and real value of the function y
= sin(x) between x = 0 and x = 1.

Depending on the application, one can say that the approximation of
the interpolated algorithm is reasonable and can be used inside this range
of the “unknown” function. However, what happens if the interpolation
is performed in an extended region of the function? Suppose now that
the now value of the function is between x = 0 and x = 2, for which y = 0
and y = 0.909. One desires to know the value of y for x = 0.5 performing
linear interpolation. The calculation is done as follows:

() ()0.909 0
0 0.5 0 0.227

2 0
−

= + − =
−

y

Now comparing the new approximation with the real value of function
one can obtain the following figure:

Object-oriented Modelling for Scientific Computing26

Figure 5: Difference between interpolated value and real value of the function y
= sin(x) between x = 0 and x = 2.

The approximation gets much worse as the range of the values used to
perform the interpolation increases. This feature is one of the drawbacks
of the linear interpolation. Nonetheless, it is a powerful and simple tool
for estimation and curve fitting.

OBJECT-ORIENTED PROJECT
The field of knowledge responsible of planning, organizing, securing
and managing resources in order to fulfill specific tasks and objectives
is referred to as Project Management. The vital challenge of project
management is to complete all the engineering project tasks and
objectives, without violating the project scope, time and budget. These
three are also called project constraints.

The secondary—and more ambitious—challenge is to optimize
the allocation and integration of inputs necessary to meet pre-defined
objectives (Thapa, 2011)

There exist different models which can support the development
process such as Waterfall Model, Spiral Model, RAD Model, Incremental
Model, Object Oriented Model etc. Each model has advantages and
disadvantages, and the decision to choose a specific one depends mostly
on the development team. A second possibility is a combination of
different models in order to better fulfill project requirements.

When using an object-oriented design, the main building block of the
software becomes the classes and their instances, or objects. The objects

OBJECT-ORIENTED
DEVELOPMENT AND
PROGRAMMING

3
SECTION

Object-oriented Modelling for Scientific Computing28

are specific things, while the classes are generalizations of the things. For
instance, in a software for bioinformatics, a class Lion may define any
type of lion, of any gender, age or size. On the other hand, an object Lion
defines one specific lion with (possibly, depending on the necessities
of the project) defined gender, age, name, size, and so on. In summary,
every object has its own state and behavior, while the class describes
which states belongs to the its type (without a defined value) as well as it
holds the behavior definitions.

According Thapa (2011), the object- oriented approach to software
development is decidedly a part of the mainstream simply because it has
proven to be of value in building systems in all sorts of problem domains
and encompassing all degrees of size and complexity. Furthermore,
most contemporary languages, operating systems, and tools are object-
oriented in some fashion, giving greater cause to view the world in
terms of objects. Object-oriented development provides the conceptual
foundation for assembling systems out of components using technology
such as Java Beans or COM+. Constructing object – oriented systems is
exactly the purpose of the Unified Modeling Language (UML).

Booch (1996) mentions that some advantages of the object-oriented
project development is the fact that as a common unit of decomposition
is employed, features such as incrementation and iterative process are
naturally possible. It is also noticeable that, qualitatively, they demand
different kinds of measures. The following four points are major benefits
derived from an object-oriented approach:

• Better time to market
• Improved quality
• Greater resilience to change
• Increased degree of reuse
Nonetheless, to fully benefit from this project development approach,

it is important to consider five habits (Booch, 1996):
• A ruthless focus on the development of a system that provides a

well-understood collection of essential minimal characteristics;
• The existence of a culture that is centered on results, encourages

communication, and yet is not afraid to fail
• The effective use of object-oriented modeling

Object-Oriented Development and Programming 29

• The existence of a strong architectural vision
• The application of a well-managed iterative and incremental

development life cycle
Although this points may appear to be generic in the context of

project management, the presence of object-oriented approach in the
design process reinforces the attention that should be taken at each point.

The first point, ruthlessness, is special applied in object-oriented
design, since a project is supposed to better react to changes in the
understanding of the real problem. When this changes are applied to the
project, not much effort should be required to tune the project, which
means that no many parts of the software are to be necessarily rewritten,
for it should support modularity and extensibility.

An efficient object-oriented software development organization is
focused in the development, delivery and maintenance of the software
products satisfying the users requirements and providing delighting
features. Each activity performed during the software development:
analysis, design, implementation, quality assurance and documentation
are only important if they are ways of achieving the final goal.

A well-organized and efficient object-oriented project should have
the following features:

• A collection of classes, well organized into hierarchies
• A well-defined set of collaborations that specifies the different

ways that the classes communicate with one another, providing
system functionalities.

Naturally, a huge collection of classes and definitions of interactions
among them does not necessarily make a good and efficient software.
This is only achieved by implementing just the necessary number
of artifacts that the software requires. An excess of prototypes, test
scaffolding, documentation and team will basically waste resources and
decrease code readability and extensibility. The reusable artifacts of
every software project include:

• Architecture
• Design
• Code
• Requirements

Object-oriented Modelling for Scientific Computing30

• Data
• Human interfaces
• Estimates
• Project plans
• Test plans
• Documentation
Jones apud Booch (1996) refers to these artifacts as reusable because

they may surpass the lifespan of the project that created them. The same
piece of code can be transported from one project to another. The design
of an user interface of one application may be also used in a second one.
Frameworks can be architectures serving as foundation for an entirely
family of programs.

INTRODUCTION TO PROGRAMMING
A computer program can be seen as a series of instruction that defines
how some electrical impulses flow inside a computer system. These
impulses are not restricted to the computer’s memory, but they interact
with mouse, keyboard, screen and any other peripheral connected to the
machine, in order to produce the tasks that the program issued. These
tasks can be from a simple blank screen where the user is allowed to type
some text, to high-level games where artificial intelligence is required to
challenge the user of the machine.

Software
A software is a computer program itself. It contains not only one, but a
collection of instructions, which may be organized into different files,
that defines the series of task that the computer should perform. In order
to be stored, some sort of medium must be used which is capable of
recording the instructions and transmitting it to the computer. The simplest
example of a medium storing such instructions would be a simple piece
of paper with some code written on it. While this type of medium is
easy for a human to read and maybe even to somehow understands what
the computer should do, it is not the most viable way for a computer to
understand the program. So floppy disks, CD, DVD, USB pen drive are

Object-Oriented Development and Programming 31

all examples of mediums that can store a software, and are readable by
a computer.

Before being used, the software must be read by the memory of the
computer, also called Random Access Memory (RAM). This is normally
achieved by storing the program in the hard-driver of the computer,
which is accessible by the internal memory of the computer through
electromagnetic reading of the patterns stored. Such patterns are not
easily understandable by humans, for they are a sequence of zeros and
ones, such as:
00111001000111

A computer is capable of translating such sequence in some sort of
task that it should perform, such as the blink of a screen, the writing or
reading of a document, etc. Each type of processor has its own language,
or way of interpreting the series of ones and zeros. For example, in a
Windows system the above sequence may tell the machine to blink the
screen, while in a Mac OS it may mean that a document should be printed.
This means that each processor has its own machine language.

Software development tools
Suppose a programmer wants that a computer sums two numbers, and
print in the screen the result of this algebraic operation. How can this be
performed with the series of zeros and ones mentioned earlier? That`s
not an easy task, and it can become nearly impossible when it refers to
complex series of tasks, performed by operating systems or high-level
commercial software’s.

For that reason, tools were developed, which software instructions are
seen as a series of symbols or text that are easier for a human to manage
than a binary sequence. These tools convert the textual or graphical
instructions developed by the programmer into machine language, which
can be read by the computer. For instance, C++ programming language
allow developers to see the instructions to a computer in a way very
similar to the English language. However, the syntax is developed in
a much simpler way, for natural language has natural ambiguity and it
may require a good background knowledge from the message recipient
to clearly understand what is being said.

Object-oriented Modelling for Scientific Computing32

Coming back to the example mentioned in the beginning of this
subsection, in which the developed wanted the machine to sum two
numbers and print it to the screen. In C++ language, this can be simply
done by writing the following set of instructions:

a = 1
b = 2
c = a + b
The example above is not a complete program, but it is an example

of how the instructions can be much easier understandable using these
development tools rather than the binary sequence, which is the natural
language of a machine. This does not mean that a computer can directly
understand the sequence written above, but it uses a compiler, or
translator, to rewrite the instructions above in its language.

In language used to write the code (higher-level) is referred to as
source code. The language that is read by the machine is referred to as
target code. A source code can be translated to different target codes,
depending on the processor used. This means that for a Mac OS system,
or a Windows system, the same instructions written in C++ for instance,
can perform the same tasks, although these tasks are internally translated
to totally different target codes.

To develop softwares, a series of tools are available. Some of these
are:

• Editors
An editor can be from a plain text editor such as Notepad, to a very

detailed software with different tools that may help the developer to
speed up the program development process. In the editor, the developer
writes the instructions as if he was written in text, however following
the rules according the programming language used, similarly to natural
languages. For instance, the following statement in English:

“The big red train travels to the beautiful station of Amsterdam”
Is grammatically correct in English. However, if we rewrite it as:
“The train big red to the beautiful station travels of Amsterdam”
Is wrong and cannot be easily understandable by another person. In

the case of a computer program, the “grammar” must be perfectly well

Object-Oriented Development and Programming 33

written, otherwise errors are produced or the software does not perform
the desired task exactly as wanted.

For example, in computer language, if one wants to create a variable
called dog and to attribute the value of 10 to it, in C++ language as well
as many other languages this could be written in an editor as:
dog = 10

On the other hand, is one wants to perform this task, but writes it in
the following form:
dog is equal to 10

This will issue an error in a C++ program, although from a human
point of view is clearly understandable that the dog variable is equal to
10. The programming languages have strict rules that have to be follow
in order to work properly.

Compiler
A compiler is the piece of tool responsible of translating the code
from the source code to the target code, which may not necessarily be
machine-language. For instance, MATLAB, a high-level programming
language has tools to compile some code into faster C code. The C code
is then processed by a C compiler to produce and executable program.
The process of compilation follows a set of instructions or procedures
which are:

• Preprocessor: — as the name refers to, it processes some
header and instructions to modify the content of the source file
before the compiler begins.

• Compiler – translates the processed code into target code.

• Linker – It links or combines both the compiled code with
the compiler-generated machine code to make a complete
executable program.

• Debugger – A tool that makes it possible for a user or a
developed to trace back errors in the program or in its execution,
even in the level of line by line. The debugger keeps track of
the value of variables, objects and other generated elements
of the program, so the developed can see it these values are as

Object-oriented Modelling for Scientific Computing34

expected, and if not, he can know the piece of information that
is generating the error.

• Profiler – A tool that keeps track of the performance of the
program. With it, a developer can trace with elements are
taking more memory and time, and optimize the code so it can
run smoothly and faster, without non-usable code.

UNIFIED MODELLING LANGUAGE
The so-called Unified Modelling Language (UML) is a broadly known
tool for developing software in general. It implements international
industry standard graphical notation to describe and characterize software
analysis and design. The use of a standardized notation for software
development leaves little or no room for misinterpretation and ambiguity.

The UML derives from the unification of notations developed by
Booch, Rumbaugh, Jacobson, Mellor, Shlaer, Coad, and Wirf-Brock,
among others (Williams, 2004). It has been accepted as a standard by the
Object Management Group (OMG), which is a non-profit organization
responsible for distributing object-oriented computing.

The UML is specially useful for object-oriented scientific computing
for, as it follows the basic notions of object-oriented programming, it can
be used as a standard and a visual tool to analyze and design scientific
software.

A model in UML is composed of three basic elements:
• UML building blocks
• Rules to connect blocks
• UML common mechanisms
Regarding the UML building blocks, they can be divided into three

types:
• Things
• Relationships
• Diagrams

Object-Oriented Development and Programming 35

Things
The Things are the most important building block type in UML language.
They can be subdivided into:

• Structural
• Behavioral
• Grouping
• Annotational
Structural things are static components of the model, representing

physical elements or concepts that the model possess. The following is a
description of the structural elements in UML:

Class: Using the same original concept of object-oriented language,
a class defines the attributes and behavior of a set of similar objects in the
system. Example: the Dog class defines the behavior of Rex, Daisy and
Max, three different “objects” derived from the same class.

The UML representation of the Class is as follows:

Figure 1: The Class thing representation in UML.

Interface: The Interface specifies the responsibilities of a class, by
defining a set of operations attributed to it.

The following figure is the standard representation of the Interface
block.

Figure 2: The Interface thing representation in UML.

Collaboration: A block that defines the interaction between two
elements in the model. The representation of the Collaboration is as
follows.

Object-oriented Modelling for Scientific Computing36

Figure 3: The Collaboration thing representation in UML.

Use case: This block represents a set of actions performed by a
system to reach a specific objective.

Figure 4: Use Case representation in UML.

Component: This block represents a physical part of the system. The
graphical representation of a Component block is done according the
following figure.

Figure 5: Component block representation in UML.

Node: The Node block is a physical element that exists during the
execution of the model. Its representation is done as follows.

Figure 6: Node block representation in UML.

The Behavioral things are dynamic elements of the UML model. They
represent interactions between structural things, as well as the current
state of a thing. The following blocks are behavioral things in UML:

Interaction: Is a block consisting of one or more messages exchanged
among blocks in order to perform a determined task or to reach a specific

Object-Oriented Development and Programming 37

objective at simulation time. The following figure is a representation of
this block.

Figure 7: Interaction block representation in UML.

State Machine: This block is used to define the different states a
block goes through during its lifetime (simulation time). These states are
usually responses to different events issued in the model, generated by
external factor.

Figure 8: State Machine block representation in UML.

Behavioral and Structural things are grouped together using
another type of building block in UML, referred to as grouping thing.
There is basically one type of grouping thing, the Package. The UML
representation of this building block is shown below.

Figure 9: Package block representation in UML.

In many situations, it is useful to add comments, remarks, highlights
or any sort of special information in the model, which does not necessarily
interact with the model, but it is used as a small piece of information
between human-machine. In UML, the An notational things are used to
perform this type of procedure. The unique building block in this type of
thing is the Note, and its representation in UML notation is shown below.

Object-oriented Modelling for Scientific Computing38

Figure 10: Note block representation in UML.

Relationships
Another very important concept in UML, the Relationship shows how
elements are associated with each other. This association is an important
feature that determines the functionality of the software.

• There are four different kinds of Relationship in UML:
• Dependency
• Association
• Generalization
• Realization
Dependency: This kind of relationship determined that the changes

in one element causes transformation in the dependent element. The
representation is done as follows.

Figure 11: Dependency block representation in UML.

Association: It determines a collection of linked UML elements
in the model, describing also how many objects are taking part in that
relationship.

Figure 12: Association representation in UML.

Generalization: The generalization reveals a relationship of
specialized – generic element in the UML diagram. It describes a relation
of inheritance between the connected objects. For example, from a

Object-Oriented Development and Programming 39

“Plant” object to a “Flower” object and a “Tree” object. The following is
the UML representation of such block.

Figure 13: Generalization block in UML.

Realization: The realization block, as the name suggests, reveals a
relationship in which one block tells the other what must be realized.
The first block does not realize it, but the second one. It is especially
useful for the development of interfaces. The following figure shows its
representation.

Figure 14: Realization block in UML representation.

Ways of modelling
UML, as a versatile language, allows different approaches for different
model types. These different approaches define which tools will be used
in which way. Three different ways of modelling, of model types are
clearly defined in UML. They are:

• Structural Modelling
• Behavioral Modelling
• Architectural Modelling
Structural Modelling: As the name suggests, this approach is used

to capture the static features of a system. It consists of the following
elements:

• Classes diagrams
• Objects diagrams
• Deployment diagrams
• Package diagrams

Object-oriented Modelling for Scientific Computing40

• Composite structure diagram
• Component diagram
The structural model of the system represents the very existence of

it, with its components all clearly stated. Therefore, the class diagram,
component diagram and deployment diagrams are part of structural
modeling, representing the elements and the mechanism to connect them.

Behavioral Modelling: In contrast with the structural modelling, the
behavioral one reveals the dynamics of the model, how things interacts
and how they change during their lifecycle. It consists of the following
diagrams:

• Activity diagrams
• Interaction diagrams
• Use case diagrams
These diagrams are used to show the flow of data and information in

the model.
Architectural Modelling: The architectural modelling represents the

combination of the structural modelling and the behavioral modeling. It
can be defined as the blueprint of the whole system. The Package diagram
comes under this modelling structure.

Diagrams
A diagram in UML is an element used to plot all the things and
relationships, showing the entire behavior and relations inside the system
under analysis. The visualization of these diagrams is the most important
aspect of the entire UML model development.

Because the complexity of a system usually cannot be seen from
a single perspective, UML possess 9 different diagrams with details
specific to each that makes it capable of interpreting the majority of real
and human-developed systems. These diagrams are:

• Class diagram
• Object diagram
• Use case diagram
• Sequence diagram
• Collaboration diagram

Object-Oriented Development and Programming 41

• Activity diagram
• Statechart diagram
• Deployment diagram
• Component diagram

Class diagrams
The Class diagrams are developed in two main phases of the model
implementation: analysis and design phases. At the analysis phase, the
conceptualization of the class is very high, and its representation until
this moment may only be a symbolic name with some general description
and pseudo-code describing the main operations performed by this class.
It may be used to reveal the relationships in the problem domain, but the
system implementation is still not clear at his phase.

At the design phase, the class diagrams already reach a more concrete
state, with clear attributes and operations, detailing implementation
procedures and the relationships existent among the various classes.

There are some conventions for the definition of class diagrams:
• The name of the class has to start with a capital letter (e.g class

Dog and not class dog).
• The name of the class is written on the top of the class, in

separated compartment (rectangle), in such a way that any one
can clearly note that the name identifies that class.

• The second compartment (rectangle) is reserved to the
attributes/ data menbers of the class (if any).

• The lower compartment states the methods/ operations
performed by such class.

• Optionally, a last compartment can be added to refer to special
features of the class that may not fit into attributes/ data or
operations.

Taking the above conventions into account, a more concise notation
of the class diagram is represented below.

Object-oriented Modelling for Scientific Computing42

Figure 15: Notation of class diagram.

The former can be exemplified by a generic Box, or Volume, with
attributes such as:

• Name, or Identification (not the name of the class, but a name
or identification for each instance of the class)

• Height
• Width
• Depth
• Amount of things
And things can be added or removed from the box, so the following

operations may be performed:
• Add thing
• Remove thing
Taking all of this into account, the class diagram Box is represented

below:

Figure 16: Representation of the Box class diagram.

Object-Oriented Development and Programming 43

Object diagrams
Object diagrams are representations of specific instances of classes
developed before. The concepts applied to the class diagram are in
this sense, the same applied to the object diagram. An important aspect
of object diagrams is that they are a static view of the system being
modelled, so they represent a snapshot of the system at a particular time
of the simulation lifetime.

In a class diagram, the desired concept is represented as an abstract
model consisting of classes and their relationship. On the other hand,
object diagrams as specific representations of such abstract models,
which exists in a particular moment of the simulation (or at any moment),
with a concrete nature.

There are different purposes in using an object diagram, such as:
• Forward and reverse engineering of the system;
• Analysis and visualization of objects relationship in a system;
• Static view of interaction;
• To be able to acknowledge object behavior, as well as the

relationship among them in a practical sense.
The following figure illustrates the difference between a class

diagram and an object diagram. In the right side (the class diagram) an
abstract polynomial class is defined. The polynomial class can define
polynomials (instances of the class) with different orders, different
constant values and so on. On the left side (the object diagram) a specific
instance of the polynomial class is defined, which is classed poly12. An
instance has defined properties and attributed values to it, although it
may change at different simulation moments. Nonetheless, if a snapshot
of the simulation is taken, the object at that specific moment has definite
values and it highly concrete.

Figure 17: Class diagram (left) and object diagram (right) in UML.

Object-oriented Modelling for Scientific Computing44

Use case diagrams
A Use case diagram refers to how the users (also denoted as actors)
interact with the system. A set of special symbols and connectors are
used to illustrate these relationships. The following purposes should be
fulfilled when setting up such diagram:

• The scenarios in which the system interacts with people,
organizations, or other systems;

• The objectives or tasks that such actors achieve;
• The scope of the system.
The purpose of an use case diagram is not to depict detailed interaction

of the user at each simulation time with the system. Rather, the objective
of it is to show a general overview of the relationship among actors, use
cases and systems. In simple systems, a use case diagram can be replaced
by a use case textual description, if the developer desires to do so.

In the diagram, each use case is symbolized with a labeled oval shape.
Lines represent actors in the process, and each actor interaction with the
system is represented with a line between the actor and the use case. The
system is limited with a box around the use case.

The following figure illustrates a simple use case diagram of a
simulator / equation calculator. The user interacts with the system by
providing the necessary parameters, solvers, etc in order to configure the
model or equation to be simulated.

Figure 18: Example of a use case diagram (Simulator).

Object-Oriented Development and Programming 45

On the other hand, the Model / Equation external service captures the
configuration provided by the user as well as the run simulation command
in order to generate the results. A post process function is used to prost
process the data and generate reports / outputs.

The ideal application of use case diagrams is in cases such as (Lucid
Chart, --):

• To represent the goals or objectives of user-system interaction;
• Define and organize functional requirements in a system;
• Specify the context and requirements of a system;
• Modelling the basic flow of events in a use case.
The main components of a use case diagram are:
• Actors: The person, organization or external service that

interacts with the system. They must be external and must
produce/ consume data. The total set of actors in a use case
model reflects everything that needs to exchange information
with the system (Rosenberg and Scott, 1999).

• Scenario: Also referred to as system, is the sequence of actions
and interactions between actors and the system.

• Goals: the result of most use cases. A good use case diagram
is supposed to show the activities and variants to reach the
necessary goal.

The relationship between an actor and the use cases is not a single
one, rather it may be of different kinds. The default relationship if the
«communicates» relationship. This type of relationship is used to show
that the actor has issued a request to the use case, or vice-versa. The actor’s
issues requests usually requiring measurable outputs. A more abstract
relationship may exist between different use cases. If a line without label
is written in a use case diagram, then a relationship of «communicates»
exists between the two entities involved.

Regarding use cases relationships, as mentioned earlier, they may
be far more abstract than the relationship between actors and use cases.
In UML, there are two possible types of relationships among use cases.
These types are:

• <<include>>
• <<extend>>

Object-oriented Modelling for Scientific Computing46

The <<include>> relationship is used to extend the functionality of
a use case, incorporating the behavior of the one in the other extreme
of the relationship line. In this it is avoided the repetition of a behavior
description through the inheritance of it. As an example, suppose that
different functionalities in a simulator application requires the user
performs the same action. In this case, these functionalities will all have
a <<include>> relationship with this common use case task. Because this
type of relationship is not the default one, a label must be provided over
the relationship symbol to make it explicit.

The <<extend>> relationship is used when a use case may perform a
different behavior or a specific one at a specific lifetime of the simulation,
under certain stated conditions. This means that this task will not be
performed for sure every time that the use case runs, but only on special
occasions. For example, suppose that a system which an user provides
a number for a “Root Calculator” use case, and it calculates the squared
root of this number. It is supposed that the user will provide positive
numbers, so the square root calculation is straight forward. However,
what happens if the user provides a negative number? A <<extend>>
relationship can be used to, for example, issue an error and to ask for
the user to provide positive numbers only, or a different algorithm which
is able of calculating complex results for the square root of a negative
number.

Sequence diagrams
As the name shows, sequence diagrams describe a chronological
sequence of events of the system, and are mainly used in analysis and
design phases. When a sequence diagram is created, objects defined in
use cases are identified and considered as participants of the sequence.
Different pieces of the use case behavior are attributed to objects in the
form of services.

Sequence diagrams can be used to refine the use case diagram, for
during each implementation the developer can figure out at what specific

Object-Oriented Development and Programming 47

time of the simulation lifetime each event occur, and if an interaction
which was not depicted before can be used to refine the use case diagram.
The same can be said for an interaction that it never happens in a sequence
diagram, can also be eliminated from an use case diagram.

According Williams (2004), in a sequence diagram, objects are shown
in columns, with their object symbol on the top of the line. Similar to the
class diagram, the object name appears in a rectangle. If a class name is
specified, it appears before the colon. The object name always appears
after a colon (even if no class name is specified). If an external actor (see
the preceding Use Case Diagram section above) initiates any interaction,
the stick figure can be used rather than a rectangle.

The diagram is seen in two dimensions. The vertical dimension refers
to the simulation time, or application lifetime. The horizontal dimension
represents the objects existent in the system. The sequence of events start
at the top-left corner of the diagram, and the time progresses from top to
down. The vertical line is referred to as object’s lifeline. The ordering of
the objects in the horizontal is arbitrary.

The representation of a message sent from one object to another is
done with a line from the sender to the receiver labeled at a minimum
with a message name. Optionally, the message label can include the
information (arguments) that are necessary to the sent to the receiver
with the message. When the receiver gets the message, a corresponding
operation is executed, and during the realization of such task, other
messages may be sent to other objects. An object can also send a message
to itself, represented by an arrow from the object line to the same line.

The following figure illustrates a simple sequence diagram of an
elevator service. These diagrams are normally concrete and represent
one scenario. It may be necessary for an application to have a series of
sequences diagrams, each one showing a specific scenario, according the
user requirement.

Object-oriented Modelling for Scientific Computing48

Figure 19: Use case diagram of an elevator service. (Source: http://www.web-
feats.com)

Collaboration diagrams
The Collaboration diagram is similar to the Sequence diagram, in the
sense that it represents the interactive behavior of objects in UML. The
main difference relies in the fact that, while Sequence diagrams illustrates
the time flow of messages in a model, the collaboration diagram shows
the structural organization of the objects that send or receive messages.

State diagrams
This type of diagrams describe the behavior of nontrivial objects. It
is mainly developed during the analysis and design phases. They are
especially useful for describing the states of an object across different
use cases, and also to identify object attributes as well as to refine the
behavior description of an object (Williams, 2004).

To understand what the purpose of such diagram is, it is necessary to
define what a state in UML is. A state is a condition that a object can be
at some point during its lifetime, within a time frame. The state diagrams
should be able to describe each and every condition (state) that an object
may go through during its lifetime, as a result of interaction with different
elements in the systems that generates a transition in the object’s state.

Object-Oriented Development and Programming 49

The main purposes of the state diagram are:
• To model the dynamics of a system;
• To model the lifetime of a reactive system;
• To describe the different states that an object goes through

during its lifetime.
• To outline a state machine capable of modelling the states of

an object.
Different symbols are used to represent each feature of the state

diagram. A state is represented by a rounded rectangle, as shown in the
figure below.

Figure 20: State representation in UML.

The initial condition (start state) is represented by a filled circle, as
shown in the figure below.

Figure 21: Initial state representation in UML.

The final condition is represented by a filled circle with another circle
around it

Figure 22: Final state representation in UML.

Object-oriented Modelling for Scientific Computing50

A transition or a change in the state is represented through arrow lines
connecting different states, which is triggered by events, conditions or
time.

Activity diagrams
An activity diagrams is mainly developed during the implementation
of “complicated” methods that may require many different activities to
be performed in specific sequences. The activity diagram can also be
incorporated in a system model during the analysis to better understand
the flow of a use case, by breaking it down. Through an activity diagram,
the developer postulates the sequence of rules that the use case must
perform.

Basically, an activity can be described as an action that must be
performed, either by a human or a computer. Each activity block must
be a single step. For instance, the task “cook rice” is not a single activity,
for it involves a series of single actions. These actions are, a simple
way, to boil the water, to pour the rice in the water, wait for free water
evaporation and finally to remove the rice from the heat. The description
of these activities in a flow sheet constitutes an activity diagram.
This is an example of a series of activities that must be performed in
a row. Alternatively, an activity diagram may show activities that may
be performed in parallel to each other, and some symbols are used to
guarantee synchronism, i.e, all the activities before have been finished
before going to a next step. This can be exemplified in a more refined
example of the “cook rice” simulation, for the water can be boiled while
some garlic is being fried and rice is added and salted. When the rice
is pre-prepared and the water is boiled (synchronism), then we add the
water to the rice and next activities are the same as described above.

The main purposes of an activity diagram are:
• Draw the activity flow of a system;
• Describe activities in a sequential way;
• Described parallel, sequential, branched and concurrent flow

of the system.
The following elements are involved in an activity diagram:
• Activites: the main core of the diagram.
• Association

Object-Oriented Development and Programming 51

• Conditions
• Constraints
The used symbols and representation in an activity diagram are

very similar to a state diagram. Two additional symbols are used: the
synchronization bar and the decision symbol.

As the name resembles, the synchronization bar indicates that all
parallel activities above it must be finished before proceeding to the next
activities. This allows concurrent activities to exist and to define the point
where the output of them must be ready to serve as a trigger to the next
activities.

The decision symbol is a diamond shape, with one or more incoming
arrows and one or more outgoing arrows, each one labeled by a distinct
condition (Williams, 2004). The condition is a Boolean value (true or
false, 0 or 1) which defines all possible outgoings of a decision element.

Component diagrams
The main focus of a component diagram is to reveal the relations existent
among different components of the system. The component is defined
in UML as a module of classes which represent independent systems
or subsystems with the capability of interfacing with the system as a
whole. A system mainly based in this type of approach is referred to as
component-based development. The component diagrams also allows an
overview of the whole project, in such a way that the developer has a
general outlook of what the system is supposed to do.

From an object-oriented point of view in scientific computing, the
component diagram allows the main developer to arrange classes in
groups based on a common purpose. In this way, other developers can
also have a general outlook of the project in a higher level.

The main distinction between a component and a class is done in the
header of the symbol. A component is also represented with the keyword
<<component>> and/or the component symbol. This is very important
for, the same symbol without this indication is a class object.

The following figure illustrates a component object in UML. As
mentioned before, special attention is given to the header with the
keyword and the component logo.

Object-oriented Modelling for Scientific Computing52

Figure 23: Component example in UML.

The interfaces of a component are represented in a similar way that
is done with attributes and methods in a class object. These interfaces
represent the location where the group of classes inside the component
interacts with other system components. There are two common
interfaces: the provided interfaces and the required interfaces.

The provided interfaces are represented as a straight line from the
component box with an attached circle. The provided interfaces represent
communication between data produced by the current component with
an external one.

The required interfaces are represented using a straight line from
the component box with an attached half circle. Alternatively, it can
be represented as a dashed arrow with an open arrow. It indicates the
interfaces used to obtain information for a component in order to perform
the function it was designed for.

The component diagrams should generate communication between:
• The scope of the system;
• The overall structure of the application;
• Specific objectives that users or external services may need to

achieve.
The following is an example of component diagram in scientific

computing. It can be clearly seen that the use of UML notation to develop
such system makes the development of Object Oriented programming
much easier.

Object-Oriented Development and Programming 53

Figure 24: Example of Component diagram in OOP for scientific computing.

Deployment diagrams
In essence, a deployment diagram describes the physical deployment of
information that the software generates. Each information generated by
the software is called an artifact. The basic building block for this type
of diagram is the node, which represents the basic software or hardware
elements in the system. Lines between nodes indicate relationships and
shapes inside nodes represent software artifacts that are deployed.

The deployment diagrams are applicable in:
• Showing which software elements are deployed by which

hardware elements;
• Illustrating the runtime processing for hardware;
• Provide the topology of a hardware system.
The process of developing deployment diagrams involves tasks such

as: identifying the scope of the system under development, whether
it involves a single machine or a network or computers; identify the
hardware limitation of the system and take this into consideration in the
development of the system.

Applications of UML in Object-Oriented Scientific
Computing
Recently there are different research lines in using UML for scientific
computing. In this chapter some applications are reviewed, which also
serve as ideas to help the reader in his own application of this tool.

Object-oriented Modelling for Scientific Computing54

• Back in 2007, Selic addressed the issue of software’s which
are developed using different programming languages and
conventions, which inherits supported tools which are not
very user friendly and not well designed as well. The intent
was to develop an expressive domain specific language, still
keeping the benefits of the existent programming languages
and frameworks. The solution addressed by the author is to
use UML profile mechanism to define your “expressive”
domain specific modeling language. This confronts with the
use of DSL in conformation with the UML standards. The new
implementation is referred to as DSML (Directory Services
Markup Language).

Regarding using cloud resources for scientific computing, Ostermann
et al. (2009) revised the challenges and usuability of compute Clouds to
extend a Grid workflow middleware and show on a real implementation
that this can speed up executions of scientific workflows. This real
implementation makes use of UML notation in order to have a standard
for the implemented models, in such a way that no specific piece of
software needs to be run in a cloud machine, but all the users involved
uses the same one, i.e ASKALON which is a workflow library using
UML standard notation.

Qin and Fahringer (2012) developed a workflow environment called
ASKALON Workflow Hosting Environment (AWHE), a workflow
library to develop models using the latest standard UML Activity
diagram. The modelling environment incorporates predefined UML
modelling elements and user-defined constructs used to generate the
AWDL (Abstract Workflow Description Language) representations of
scientific workflows and submit them to the ASKALON runtime system
for execution.

In the same year (2012), Perez et al. developed pyOpt, an object-
oriented framework for formulating and solving nonlinear constrained
optimization problems in an efficient, reusable and portable manner.
The framework uses object-oriented concepts, such as class inheritance
and operator overloading, to maintain a distinct separation between

Object-Oriented Development and Programming 55

the problem formulation and the optimization approach used to solve
the problem. The framework is developed in the Python programming
language. Although the software itself does not make use of UML
notation, the authors show how UML notation was used throughout the
process of software development and how the visualization of it facilitates
the analyses and understanding of the whole system.

C++
Before starting to program in C++, it is necessary to have installed

in the computer some editor, a compiler, preprocessor and a debugger.
Fortunately, it is not necessary to search for each one of these, as there
are softwares available, integrating all these tools into a single piece
of program. Some examples that the reader can obtain are listed in the
following table:

Software License Windows Linux Mac OS

C++Builder Proprietary Yes No Yes

Code::Blocks GPL Yes Yes Yes

Dev-C++ GPL Yes No No

Eclipse CDT EPL Yes Yes Yes

In the present book, we will focus on the development using
Code::Blocks, because it is free and one of the easiest tools to develop
in C++.

Installing an IDE (Code::Blocks)
Before we start any programming, it is necessary to download and install
the IDE, which will help us to go through the tutorial. The Code::Blocks
is a free software to develop in C, C++ and FORTRAN, with a clean and
easy usable IDE. To obtain it, first navigate to the website: http://www.
codeblocks.org

And under the sections “Download”, look for the binary release,
which is the easiest way to install the software. Once downloaded and
installed, we can start with the programming.

One the software starts, the following screen is shown:

Object-oriented Modelling for Scientific Computing56

A new project can be created, by clicking in the link Create a new project, in the
main program area. We will create a simple program, which will show a mes-
sage in the screen and the user can click any button to close it. Although this
piece of software is not clearly useful, it will help the reader to get a first contact
with the C++ programming language.

After clicking in the Create a new project button, the program shows
the following box:

Object-Oriented Development and Programming 57

The project we would like to create is a simple console application. To
create it, just click the icon Console application, on the top right corner,
and the button Go will unblock. This button leads us to the wizard, or
step-by-step helper to begin the project.

The next window is a welcome window, and a check box can be
selected to skip it next time the user starts a project. Clicking on the Next
button, the program asks with the developer wants to write a C or a C++
project. For our project, select C++ and click the Next button.

In this moment, it is necessary to define the project title, the
folder where the project will be saved. In the Project Title box, type:
“HelloWorld” (without the quotation marks), and select a folder to save
your project. The program automatically fills the box Project filename,
with what was written in the project title box, plus a “.cbp” ending. The
last box shows the complete filename for your project, including the
“.cbp” file.

Clicking Next, a new window is issued, and a compiler must be
selected. Make sure to select one compiler already installed in the
computer. If unsure, for Windows users, a free Windows C++ 2010
compiler can be downloaded from Windows© website (https://www.
microsoft.com). There are two selection boxed below for Debug and
Release configuration, selected by default. Just click the Finish button.

Developing a first program
Once a new project was created in the previous sub section, it is time to
start the real programming. On the extreme upper left corner, a project
tree can be seen. It is necessary to fully expand this tree to see the source
code, as showed below:

Object-oriented Modelling for Scientific Computing58

Now double-click the “main.cpp” file to see its content. The following
text is shown:
#---
1 #include <iostream>
2
3 using namespace std;
4
5 int main()
6 {
7 cout << “Hello world!” << endl;
8 return 0;
9 }
#---

We will not go through all the details and lines of the program, but
some features must be highlighted:

The first line reads:
1 #include <iostream>

Is an information necessary for the preprocessor, to know which
libraries, or additional code are necessary to be linked to the source code
for the program to run. In this case, the library iostream read or write to
the standard input/output streams. This library is necessary if we want
to have some sort of input from the user or output to the screen, among
other uses.

Object-Oriented Development and Programming 59

The second line is an empty line. Lines without text are just ignored
by the compiler. So why they are used? For a better readability of the
developer. In the same way that regular English text is organized in
chapters, paragraphs and so on, the programs are organized in blocks and
these blocks are better seen if some space is inserted between them.

The third line:
3 using namespace std;

Is a definition which allows the developer to use functions, classes
and constants without always redeclaring the namespace from which it
belongs. For instance, the same program above could be written without
the statement on the third line in the following form:
#---

1 #include <iostream>
2
3 int main()
4 {
5 std::cout << “Hello world!” << std::endl;
6 return 0;

7 }
#---

Which issues exactly the same result of the program before, with the
difference the wherever it is used the function cout or the function endl,
it will be necessary to use the directive std:: before. So, the namespace is
used to spare typing and time for the developer.

The real program starts in line 5 of the original program:
5 int main()

The following line has an open bracket, and the line 9 closes it.
Everything inside these lines belongs to the program itself. The function
name main() is a reserved word in C++ so it knows where the main
program is.

Finally, what the program was designed to perform is line 7:
7 cout << “Hello world!” << endl;

Object-oriented Modelling for Scientific Computing60

Which is to simply issue a message in the screen, and the message is:
“Hello world!”. The function cout is used to print the expression. After
<< in the screen, and the directive endl ends the line, so what comes next
in the program will be printed in the following lines.

The expression in line 8:
8 return 0;

Is necessary to define what value will be returned to the function
main(). The beginning of the line 5 says which type of value will be
returned, in this case an integer (int), so because we are not interested
in the value itself, we return 0 (zero) to the function, and the program
terminates.

The program can be run by clicking in different ways in Code::Blocks.
One option (and the easiest one) is to click in the Build and run button,
which lies in the toolbar on the top of the screen.

A second option is to click first on the Build Button (the second
button to left of the Build and Run Button), which will just compile the
code. After click on the Run Button (the first button to the left of the
Build and Run Button), which will run the compiled code. The result
after following this procedure is shown in the following figure.

Object-Oriented Development and Programming 61

Data types
When programming, it is necessary to store different things in memory,
such as a number, a name of something, a matrix, etc. This is done by
using different data types. Depending on the data type, the system allocate
memory and decides what can be stored in reserved memory.

The following table shows the most basic primitive data types for
C++ and what it is used for.

Table 1: Primitive data types for C++

Type Keyword Description

Boolean bool Store TRUE or FALSE values

Character char One byte of integer type.

Integer int Stores integers such as 0, 1, 2, 3, …

Floating point float A single-precision floating point value.

Double floating point double A double-precision floating point value.

Valueless void Represents the absence of data

Wide character wchar_t A wide character type.

Object-oriented Modelling for Scientific Computing62

The data types can be modified by using one of the following terms:
• signed
• unsigned
• short
• long
The amount of memory and range of data which is used by each type

of data depends on these modifiers as well. The following table shows
the memory consumption and the range of data for each type of data,
unmodified and with the modifiers.

Type Typical Bit
Width Typical Range

char 1 byte - 128 to 127 or 0 to 255

unsigned char 1 byte 0 to 255

signed char 1 byte -128 to 127

int 4 bytes -2147483648 to 2147483647

unsigned int 4 bytes 0 to 4294967295

signed int 4 bytes -2147483648 to 2147483647

short int 2 bytes -32768 to 32767

unsigned short int 2 bytes 0 to 65,535

signed short int 2 bytes -32768 to 32767

long int 8 bytes -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

signed long int 8 bytes -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

unsigned long int 8 bytes 0 to 18,446,744,073,709,551,615

float 4 bytes +/- 3.4e +/- 38 (~7 digits)

double 8 bytes +/- 1.7e +/- 308 (~15 digits)

long double 8 bytes +/- 1.7e +/- 308 (~15 digits)

wchar_t 2 or 4 bytes 1 wide character

Declaring variables
In C++, a variable must always be defined before being actually used.
This definition will tell the machine that some amount of memory needs
to be reserved to the variable. The declaration is a line containing the

Object-Oriented Development and Programming 63

type of the data as well as its name, and more than one variable can be
declared in the same line. For example:
 int a, b;

Tells the compiler that memory needs to be reserved for two variables
(variable “a” and “b”), and they are of the type integer.

After being declared, an optional step is to initialize the variable, that
is to give it an initial value. This is done by writing the variable name, a
signal sign and the attributed value, as in:
a = 1;

Means that the variable “a” was attributed a value of 1 (one), which
is an integer. However, what can happen if the variable is initialized with
the wrong type of value? For example, in the case above the variable
“a” is supposed to just have integer values. If instead of writing “1”, we
write:
a = 1.1;

This can be tested in the first program we wrote. After some
modification, we arrive in a new program as shown below:
1 #include <iostream>
2
3 using namespace std;
4
5 int main()
6 {
7 int a,b,c;
8 a = ‘t’;
9 b = 1.1;
10 c = a + b;
11 cout << “Hello world!” << endl;
12 cout << “a” << a << endl;
13 cout << “b” << b << endl;
14 cout << “c” << c << endl;
15 return 0;

16 }
In the example above, the variables “a”, “b” and “c” are declared

as integers. However, “a” is initialized as a char (‘t’), b is initialized as

Object-oriented Modelling for Scientific Computing64

a float (1.1) and c is the sum of them. What happens in such case. If we
Build and Run the example, the result is the following:

The value of a was modified to 116, b was changed to 1 and c was,
as expected the sum of 1 with 116, which is 117. Why was attributed
the value of 116 to “t” ? As already mentioned, the char type is actually
an integer value hidden behind the character. These values come from
the ASCII (American Standard Code for Information Interchange). As
computers can only understand numbers, each character is converted to
a number according the ASCII. In the present case, the value of “t” in
ASCII is 116.

So, a wrong declaration of variables, as well as a wrong initialization
can lead to errors that may be difficult to track. Another situation that can
easily lead to errors as careful attention must be taken is the scope of the
variables. In general there are three places that a variable can be declared:

• Inside a function or a block, being local variables,
• In the definition of function parameters, being formal

parameters.
• Outside of all functions, being global variables.
The examples shown before use local variables declaration. This is

because the declaration of the variables occurred inside the function. An
example of formal parameter declaration is:

Object-Oriented Development and Programming 65

1 #include <iostream>
2
3 using namespace std;
4
5 int sum(int a, int b)
6 {
7 return a + b;
8 }
9
10 int main()
11 {
12 int a,b,c;
13 a = 161;
14 b = 1;
15 c = sum(a,b);
16 cout << “Hello world!” << endl;
17 cout << “a = “ << a << endl;
18 cout << “b = “ << b << endl;
19 cout << “c = “ << c << endl;
20 return 0;
21 }

We declared a function, sum(), which takes to 2 arguments, or formal
parameters, integer a and integer b. In this case is clearly seen that the
declaration of the variables followed the declaration of the function, with
a defined data type. The output of this program is the same as the one
before, with the difference that the variables are correctly initialized.

The following is an example of global variable declaration:
1 #include <iostream>
 2
 3 using namespace std;
 4

Object-oriented Modelling for Scientific Computing66

 5 int c;
 6
 7 int main()
 8 {
 9 int a,b;
10 a = 161;
11 b = 1;
12 c = a + b;
13 cout << “Hello world!” << endl;
14 cout << “a = “ << a << endl;
15 cout << “b = “ << b << endl;
16 cout << “c = “ << c << endl;
17 return 0;
18 }

In this case, the variable integer “c” is declared outside of a function,
and any following function that uses it can do so without declaring again.
That’s the difference between the local and the global variable.

Operators
Operators are used in C++ in the almost the same way they are used
in mathematics, either to perform some algebraic operation, to compare
values, to assign a value and so on.

The following is a list of common operators for C++.

Operator Description Example

+ Adds two variables 10 + 40 will give 50

- Subtracts one variable from the other 10 - 40 will give -30

* Multiplies variables 10 * 40 will give 400

/ Divides numerator by denominator 10 / 40 will give 0.25

% Modulus Operator and remainder of after
an integer division

10 % 40 will give 10

++ Increment operator, increases integer
value by one

A = 10
A++ will give 11

Object-Oriented Development and Programming 67

-- Decrement operator, decreases integer
value by one

A = 10
A-- will give 9

Relational Operators
Relational operator, as the name suggests, compare two variables and
returns a Boolean value, either true or false. For instance, if a = 10 and
b = 10.1 and we want to know if “a” is equal to b, the result if false. The
following is a list of relational operators in C++. Assume that A = 10 and
B = 10.1

Operator Description Example

== Checks if the values of two variables are equal. In
positive case then returns true, otherwise false.

(A == B) is not
true.

!= Checks if the values of two variables are not equal.
In positive case (if the variables are not equal) then
returns true, otherwise (if the variables are equal)
than false.

(A != B) is true.

> Checks if the value to the left side of the operand is
greater than the value to the right of the operand. In
positive case then returns true.

(A > B) is not true.

< Checks if the value to the left side of the operand is
smaller than the value to the right of the operand. In
positive case then returns true.

(A < B) is true.

>= Checks if the value to the left side of the operand is
greater than or equal to the value to the right of the
operand. In positive case then returns true.

(A >= B) is not
true.

<= Checks if the value to the left side of the operand is
smaller than or equal to the value to the right of the
operand. In positive case then returns true.

(A <= B) is true.

Logical Operators
There is a special type of relational opeators, used to compare Booleans
(true of false values) instead of any value as in the case above. The list
below shows some operators used in C++. Assume that A is true (1) and
B is false (0).

Operator Description Example

&& AND operator. If both the operands are true (non-
-zero), then returns true.

(A && B) is
false.

Object-oriented Modelling for Scientific Computing68

|| OR Operator. If any of the two operands is true (non-
-zero), then returns true.

(A || B) is true.

! NOT Operator. If a condition is true, returns false. !(A && B) is
true.

Assignment Operators
These operators are used to attribute a value or string to a variable, and to
modify it, summing, subtracting, multiplying and so on. The following
list shows some assignment operators.

Opera-
tor

Description Example

= Values from the right side are assigned to
the left side.

C = A + B will assign value of
A + B toC

+= Used to add the right-side value to the left
side AND attribute again to the left side.

C += A is the same as C = C
+ A

-= Used to subtract the right-side value from
the left side AND attribute again to the left
side

C -= A is the same asC = C - A

*= Used to multiply the right-side value with
the left side AND attribute again to the left
side

C *= A is the same as C = C
* A

/= Used to divide the left side value by the ri-
ght side AND attribute again to the left side

C /= A is the same as C = C / A

%= Used to get the modulus between the left
side value and the right side AND attribute
again to the left side

C %= A is equivalent to C =
C % A

<<= Left shift AND assignment operator C <<= 2 is same as C = C << 2

>>= Right shift AND assignment operator C >>= 2 is same as C = C >> 2

&= Bitwise AND assignment operator C &= 2 is same as C = C & 2

^= bitwise exclusive OR and assignment
operator

C ^= 2 is same as C = C ^ 2

|= bitwise inclusive OR and assignment
operator

C |= 2 is same as C = C | 2

Flow Control
Flow control structure are used to run a specific section of code, only
when some condition(s) is met. This structure can include only a single
condition, as well as a list of options if different conditions have to be
considered, as well as a section if any of the conditions are met. The next

Object-Oriented Development and Programming 69

flow diagram illustrates this structure:

condition?

Conditional Code

If condition is false

Figure 25: Flow diagram.

The most simple flow control structure is the if statement. It is used
to test one condition, and if it is true, then run some code. In case it is
false, it just jumps over the code and continue the code from below the if
statement block. The following is an example of this structure:
 int a,b;
 a = 10;
 b = 40;

 if (a > b)
 {
 cout << “a > b” << endl;
 }
 In the case above, the value of a is compared with the value of
b using the relational operator Greater than. If it returns true, then the
statement inside the if block (the single line with cout command) runs.

Object-oriented Modelling for Scientific Computing70

Otherwise, it just jumps this block and continues with the code outside it.
The if block can also be written in a more compact way as shown

below.
if (a > b) cout << “a > b” << endl;
This type of declaration is useful for short structures, but it can

difficult the reading for more complex programs, in which case the block
style is preferable over the single line style.

It is possible to add a condition for the case that the relational operator
returns false. To do that it is added a block else which just runs if the
condition tested in the if block is false. The following is one example of
such application:
 a = 10;
 b = 40;

 if (a > b)
 {
 cout << “a > b” << endl;
 }
 else // if a < = b
 {
 cout << “a <= b” << endl;
 }

In this case, the program will print the statement inside the else block
(“a <=b”), since the condition tested returns false. Notice the comment
used after the else keyword. Comments in such type of structures
are always good programming practice, for they do not change the
programming flow but provides the developer with some insight of what
is being done in that part of the program.

It may be necessary to test not only one condition, but a set of
conditions, and if that condition is met, then run the code inside the
block. This is done by coupling else if blocks under the if block. An else
block can also be used in such cases, in order to run some code if any of
the tested conditions are met. The following code shows how to use this

Object-Oriented Development and Programming 71

structure.
 if (statement 1)
 {
 Code if statement 1 = TRUE
 }
 else if (statement 2)
 {
 Code if statement 2 = TRUE
 }
 else
 {
 Code if statement 1 = FALSE and statement 2 = FALSE
 }

Example
Program a simple calculator to perform the four basic algebraic operations
(sum, subtraction, multiplication and division). To achieve that, show a
simple menu at the beginning of the program, from where the user can
choose one of the operations.

Solution
The following code lets the user insert the two numbers to do the
calculations, and to choose the mathematical operation in a menu, using
the if-else condition block.
#include <iostream>

using namespace std;
int c;
int main()
{
 double a,b;
 a = 0.0;

Object-oriented Modelling for Scientific Computing72

 b = 0.0;

 int c;
 c = 0;

 cout << “My Calculator 0.0 !!” << endl;
 cout << “====================” << endl;
 cout << “Type the first number:” << endl;
 cin >> a >> endl;

 cout << “Type the second number:” << endl;
 cin >> b >> endl;

 cout << “Choose the operation” << endl;
 cout << “0 - Sum” << endl;
 cout << “1 - Subtract” << endl;
 cout << “2 - Multiply” << endl;
 cout << “3 - Divide” << endl;

 cin >> c >> endl;

 if (c == 0)
 {
 cout << a << “ + “ << b <<” = “ << a + b << endl;
 }
 else if (c == 1)
 {
 cout << a << “ - “ << b <<” = “ << a - b << endl;
 }
 else if (c == 2)

Object-Oriented Development and Programming 73

 {
 cout << a << “ * “ << b <<” = “ << a * b << endl;
 }
 else if (c == 3)
 {
 cout << a << “ / “ << b <<” = “ << a / b << endl;
 }
 else
 {
 cout << “No valid option selected” << endl;
 }

 return 0;
}

In the way presented above, the user can perform one mathematical
operation as the example required, but after that the program ends. If
the user wants to continue performing calculations, he should close the
application and start it again. That is not very practical. To avoid this,
we can use loops, which tells the program to return to some point of the
code wherever it reaches the bottom of the block. One example of this
structure is the while loop block. An example of this structure is shown
below.
while (condition is true)
{
 code to run
}

This type of block can also generate infinite loops, i.e the code runs
eternally, if it never reaches a condition to leave the block. For example,
the following code:
a = 1;
while (a == 1)

Object-oriented Modelling for Scientific Computing74

{
 cout << “Print line” << endl;
}

will generate an infinite loop, for the condition (a = 1) is always true
and do not change inside the loop. Infinite loops can be dangerous inside
a program and may cause crashes on it, so it is advisable to always check
if loops are never infinite.

Basic Input and Output
An input operation is the flow of information (bytes) from the user to the
main memory (program), using either a keyboard, a disk drive, a network
connection, etc.

An output goes the other way around. It is a block of information
generated by the program and displayed in a screen, recoded in memory,
printed, etc.

C++ has a set of libraries or header files that deals with input/ output
streams. The following table summarizes them.

Header File Function and Description

<iostream> This file defines the standard input stream, the standard output stream, the
un-buffered standard error stream and the buffered standard error stream,
which are the objects cin, cout, cerr and clog respectively.

<iomanip> This file declares services to use parameterized stream manipulators with
formatted I/O, such as setw and setprecision.

<fstream> This file declares services for user-controlled file processing.

Functions
A function in mathematical terms is one or more equations or algorithms
that generates a result given some input. For instance, the function f(x)
= x² is a function that, given an arbitrary value x, generates the square of
it and give it as an output. So f(1) = 1 and f(2) = 4. In a similar way, a
function in C++ is a series of procedures that performs some task given
some input.

The program itself is a function called main. Besides that, smaller
pieces of code can be collected together to summarize a function. This
is specially useful in code that is repeated throughout the program. For

Object-Oriented Development and Programming 75

example, suppose we need to calculate the sum of a number, than divide
it by something and square it. To repeat the code for this procedure one or
two times is not a big problem, but it can become inconvenient if it has to
be done 100 times. So a function can be used to perform this operations,
and the necessary inputs are given to it.

The following code exemplifies what is above mentioned:
#include <iostream>
using namespace std;
double function1 (double a, double b)
{
 double c;
 double d;
 c = a + b;
 d = c/10;
 return d*2.0;
}
int main()
{
 double a,b,c;
 a = 0.0;
 b = 0.0;
 c = 0.0;

 cout << “My Calculator 0.0 !!” << endl;
 cout << “====================” << endl;

 for(int count=0;count<=10;count++)
 {
 c = function1(a,b);
 cout << “a = “ << a << endl;
 cout << “b = “ << b << endl;

Object-oriented Modelling for Scientific Computing76

 cout << “c = “ << c << endl;
 cout << “count = “ << count << endl;
 a+=1;
 b+=1;
 }
}

The function 1 is used to repeat a series of mathematical operations
performed inside the loop for. This same operations can be performed
anywhere inside the program without rewriting all the operations, but
just by calling the function1 which returns a number.

The expression
 c = function1(a,b);

Is referred to as a function call. The information sent inside the
parenthesis are the inputs for the function. The left-hand side of the
“equation” above is the variable that will receive the value generated by
the function.

To perform common math operations, C++ already contains a library,
cmath, which provides the functionality similar to a scientific calculator.
The following table enlists some of the functions available.

Function Description
double sqrt(double x) Computes the square root of a number:

 ()sqrt =x x

double exp(double x) Computes the exponential of a number

 ()exp = xx e

double log(double x) Computes the natural logarithm of a number

 ()log ln=x x

double log10(double x) Computes the logarithm in a base of 10
 ()log10 log=x x

double cos(double) Computes the cosine of a number

 ()cos cos=x x

double sin(double) Computes the sine of a number

 ()sin cos=x x

Object-Oriented Development and Programming 77

double pow (double x,
double y)

Raises the first number to the power of the second

 ()pow = yx x

double fabs(double x) Computes the absolute value of a number

 ()fabs =x x

To use this library, simply type in the header the prerogative:
#include <cmath>

C++ Modules
Modules can be defined as “boxes” of code, which can be easily shared
by different users without the necessity of understanding the whole
algorithm implemented on it. The only thing required is an understanding
of the interface of for what purpose the code was developed. In this sense,
a module can be seen as a “black box”.

A module may be a function or a set of functions defined to perform
a task. If the module is composed by a collection of functions, one single
function is used as in an interface, to collect all the inputs, make the
calculations inside it using auxiliary functions and generate the necessary
output. Suppose a module used to solve linear systems of equations of
the following form:

Where A is a square, invertible matrix of dimensions is n x n. x is
the solution vector of size n and b is a column vector of size n. A module
may be implemented, taking these values as parameters and generating
the necessary output using a simple prototype as follows:

SolveLinearProblem (double** A, double* x, double* b, int n);
The function SolveLinearProblem receives these arguments and

implements all the necessary functions and methods to solve the problem
and generate as output the solution vector x . This main function, as well
as all those secondary methods called by it are reffered to as a module.

C++ Classes and Objects
Classes in C++ provide a series of advantages over the previously
described modules, such as:

• Contains all the necessary functions to solve the desired

Object-oriented Modelling for Scientific Computing78

problem;
• The functions inside a class can not be accessed by other parts

of a program, except through defined interfaces;
• Can not itself access other parts of the program;
• Contains all the necessary data to solve the problem.
The data associated with a class is referred to as class members, and

the functions as methods.
In the following example, it is defined a class of Process Data. Some

basic attributes that each data may have are:
• A value (1, 2.8, 1e-2, etc);
• An unit (m², m/s, kg, etc)
• A date (for example a single number, 20081201 referring to the

1st of December of 2008).
• An identification code.
These attributes are connected to each instance of a process data

by generating the following ProcessData.hpp. Each of the attributes
mentioned above are class members.
#include <string>
class ProcessData
{
public:
std::string unit;
double value;
int identificationnumber, date;
};

The extension .hpp is used to indicate that the file is a header file
associated with a C++ program. The keyword public allows external
instances to access all variables of the class.

An usage of the class defined above is shows below. As a coding
convention, The header file containing the class definition is enclosed
within quotation marks, in contrast with system header files such as
iostream, fstream and cmath with should ne enclosed with angle brackets.

Object-Oriented Development and Programming 79

This makes easier for the developer to distinguish between local include
files and external ones.
#include <iostream>
#include “ProcessData.hpp”
int main (int argc, char* argv [])
{
 ProcessData distilled_flow;
 distilled_flow.identificationnumber = “F01”;
 distilled_flow.value = 10.00;
 distilled_flow.unit = “kg/s”;
 distilled_flow.date = 20170601;
 std::cout << “Distilled data” << distilled_flow.identificationnumber
<< “obtained on ”
 << distilled_flow.date << “ is”
 << distilled_flow.value << distilled_flow.value << “\n”;
}

Inheritance
Inheritance is defined as the ability of extending classes by implementing
them in a “family tree”. The data and methods of a superclass can be
implemented and extended in a subclass. And not only one, but several
subclasses can be derived from one superclass. The concept of inheritance
arises two complementary concepts: extensibility and polymorphism.

Extensibility is the idea that a code can be easily extended, not
by changing the original code, but only by adding functionality to it.
Polymorphism the ability of implementing the same functionality in a
variety of different types of objects.

For instance, the class developed above to hold Process Data can
be extended to hold a specific type of process data, steam process data.
Steam has specific data such as pressure and boiling point. So basically
two additional class members are added:

• Absolute pressure
• Boiling point

Object-oriented Modelling for Scientific Computing80

The boiling point can be obtained from the pressure.
As the Steam Process Data is derived from the generic Process Data,

this class definition in the .hpp file must be added in the header files.
#ifndef STEAMPROCESSDATAHEADERDEF
#define STEAMPROCESSDATAHEADERDEF
#include “ProcessData.hpp”
class SteamProcessData: public ProcessData

{
public:
SteamProcessData();
double AbsolutePressure, BoilingPoint;
};
#endif

All the public and protected members of the class ProcessData are
available for the class SteamProcessData.

Polymorphism
Polymorphism is a highly useful feature when a variety of different
classes are derived from one class, and for some of these classes it
may be necessary to adapt one or more methods of the superclass. This
redefinition can be done in C++ using the keyword virtual which defines
methods that perform different tasks for different derived classes. The
virtual keyword is a signal to the compiler that a method has the potential
to be overridden by a derived class.

An example can be shown for a class developed representing a
machine used to process some specific material. The machine refines the
material by separating it from contaminants, obtaining in average 60%
of the total mass of the raw material as the desired one, and the other
40% are contaminants and some material that could not be efficiently
processed. So, a class defining the machine is shown below.
#ifndef MACHINEDEF
#define MACHINEDEF
#include <string>

Object-Oriented Development and Programming 81

class Machine
{
public:
std::string ID;
double RawMass;
virtual double RefineRawMaterial();
};
#endif

The virtual method RefineRawMaterial() defines the equation used
to calculate the amount of refined material obtained from the RawMass
amount of raw material. The RefineRawMaterial is implemented as a
virtual method, showing that this method has a potential to be overridden
by derived classes. The implementation of the method RefineRawMateiral
is given below, where the amount of refined material is calculated as 60%
of the total raw mass (40% is contaminant).
#include “Machine.hpp”
double Machine::RefineRawMaterial()
{
return RawMass * 0.6;
}

However, a special machine is able of separating more efficiently the
same raw material, obtaining only in average 35% of contaminants in
relation to the total mass of raw material, and the other 65% as the desired
material. A subclass SpecialMachine can derived from the Machine class
above.
#ifndef SPECIALMACHINEDEF
#define SPECIALMACHINEDEF
#include “Machine.hpp”
class SpecialMachine: public Machine
{
public:
double RefineRawMaterial()

Object-oriented Modelling for Scientific Computing82

}

Basically, the Special Machine implements the same class
members and methods of the common machine. However, the method
RefineRawMaterial is redefined as to calculated properly the more
efficient separation of material as follows:
#include “SpecialMachine.hpp”
double SpecialMachine::RefineRawMaterial()
{
Return RawMass * 0.65;

}

Applications in Scientific Computing
In the following paragraphs, some literature review is given on application
of C++ language in scientific computing using object-oriented approach.
Specifically, we give a short review of the developed work and direct the
reader to the article so a deeper understanding of a work can be retrieved.

Regarding programming language derived from C++, Kale &
Krishnan (1993) developed Charm++, an explicit parallel object-
oriented programming language, also extensible. The special features of
the developed language involve multiple inheritance, dynamic binding,
overloading, strong typing, and reuse for parallel objects. Charm++
provides. Specific modes for sharing information between parallel objects
and extensive dynamic load balancing strategies are provided.

In 1993, Dubois Pe`lerin & Zimmermann developed an efficient
object-oriented finite element programming in C++. The developed
algorithm is extensive and because of that it is divided in different
companions. The first one describes the governing principles of object-
oriented finite element programming. The second companion described a
prototype implementation written in Smalltalk, which proved that object-
oriented programming is adequate for the design of easily maintainable
software. In the third and last article, numerical efficiency is analyzed.
The authors showed that achieved performance is comparable with
Fortran.

Object-Oriented Development and Programming 83

Regarding applications in Bioinformatics, Thorthon (2003) developed
a C++ library for evolutionary genetic analysis called libsequence. The
library implements methods for data manipulation and the calculation
of several statistics commonly used to analyze SNP data. The object-
oriented design of the library is intended to be extensible, allowing users
to design custom classes for their own needs. In addition, routines are
provided to process samples generated by a widely used coalescent
simulation.

Jasak et al. (2004) developed a C++ object-oriented toolkit called
FOAM, a software designed to facilitate research in physical modelling,
by mimicking in the code the continuum mechanics equations of the
physical model. With this feature, it can handle separately physics from
numerical discretization techniques. The authors explored the limitations
of the toolkit applying it in the investigation of two in-cylinder combustion
simulations.

Vukics & Ritsch (2007) created a framework for efficiently performing
Monte Carlo wave-function simulations in cavity QED with moving
particles. The developed framework uses object-oriented approach in in
C++, with features such as extensibility and applicability for simulating
open interacting quantum dynamics in general. The user is provided
with several “elements”, eg pumped moving particles, pumped lossy
cavity modes, and various interactions to compose complex interacting
systems, which contain several particles moving in electromagnetic
fields of various configurations, and perform wave-function simulations
on such systems. A great number of tools are provided to facilitate the
implementation of new elements.

Heat transfer using object-oriented approach in C++ was investigated
by Mangani et al. (2007) in the article “Development and validation of a
c++ object oriented cfd code for heat transfer analysis”. The code is based
on the Field Operation and Manipulation C++ class library for continuum
mechanics (OpenFOAM). The accuracy of the implementations was
validate comparing results with experimental data available both from
standard literature test cases and from in house performed experiments.

Ferrari et al (2016) developed an object-oriented library called
LibHalfSpace C++ to evaluate the deformation and stress in elastic half-
spaces. The study of such elastic half-spaces is employed in different
areas, such as didactic, inversion of geodetic data. A collection of well-

Object-oriented Modelling for Scientific Computing84

known models (Mogie source, penny shaped horizontal crack) are
implemented in order to define the potential usage and the flexibility of
the library.

MATLAB
MATLAB is a mixture of software package and programming language
that allows the user to do mathematics and computation, to analyze data,
develop algorithms, model real and simulate different types of models,
producing graphical visualization and graphical user interface.

This chapter gives a short introduction to Matlab, for to who are not
very familiar with this programming language and tool. Following the
introduction, it is presented how object-oriented concepts are expressed
in Matlab, as well how to use object-oriented concepts to solve simple
problems.

It is assumed that the user has either the student edition of Matlab
R2014b or newer, or a professional version. Before reading this chapter,
the reader should set up the MATLAB software on the computer and start
the application.

To run MATLAB in a PC, simply click in the MATLAB icon, either
on the desktop or in the start menu. On a UNIX system, simply type
matlab at the prompt.

When MATLAB starts, it shows two greather-than signs (>>) when it
is ready to accept any command from the user. The program can be ended
by typing quit or exit at the MATLAB prompt.

To easily reach help information, simply type one of the following
commands:

help Help on the meaning of a command. It provides a
precise explanation of commands.

helpwin Opens a MATLAB help GUI
doc the same as helpwin (helpwin will be removed in

future versions)
helpdesk Opens a hypertext help browser
demo Opens a GUI with a list of demos

Below are some useful commands to have at hand:

Object-Oriented Development and Programming 85

Version: To know which version of MATLAB are you running, type:
>> version

What: This command lists the .m, .mat and .mex files in the current
working directory. The command can also be used to list the files in
another directory, if the path of this directory is provided as second
argument. For example, the command
>> what general

Provides a list of files in the directory general inside MATLAB path.
Who: provides a list of variables in the current workspace. Whos

lists additional information about the variables. Who global and whos
global list the variables in the global workspace.

For example, the following list of commands creates a variable with
value one (1) and use the command who to see information about it:
>> a = 1;
>> who a

Your variables are:
a
>> whos a
 Name Size Bytes Class Attributes
 a 1x1 8 double

Clock: This command is used to print (or store) the current system
time. The first number provided is a multiplier. The following numbers
are [year, month, day, hour, minute, second]. For example:
>> clock
ans =
 1.0e+03 *
 2.0170 0.0070 0.0110 0.0120 0.0460 0.0316

Matlab Primer

Basic commands and arithmetic
Once the user have started MATLAB, the software opens with its default
layout, as shown below:

Object-oriented Modelling for Scientific Computing86

Figure 26: MATLAB default window.

The desktop is divided into three main panels:
Current Folder – shows the files existent on the current folder.
Command window – the place where the user can do calculations and

issue commands at the prompt (>>).
Workspace – lists the variables created or imported from files.
A variable can be created by typing a name to it, the equal sign and a

value. For instance:
>> a = 1

Creates a variable a and attributes the value 1 to it. Mathematical
operations can be directly performed using number or variables, or a mix
of them. If the user wants to perform the sum 1+1, it can be performed
in different ways:
>> a + a
ans =
 2
>> a + 1
ans =
 2
>> 1 + 1
ans =
 2

Object-Oriented Development and Programming 87

In MATLAB, the result of a command in the prompt is stored in the
variable ans, so it changes wherever a new command is issued. In the
above case, as the value of a is 1, the sum can be performed either by
summing a with a, by summing a with 1 or the natural way of 1 + 1.

The following table shows a list of valid mathematical operators
in MATLAB: The symbol in parenthesis can be used in place of the
command. For example, the command 1 + 1 is equivalent to plus(1,1).

plus (+) Addition
uplus Unary plus
minus (-) Subtraction
uminus Unary minus
times (.*) Element-wise multiplication
rdivide (./) Right array division
ldivide (.\) Left array division
power (.^) Element-wise power
mtimes (*) Matrix Multiplication
mrdivide (/) Solve systems of linear equations xA = B for x
mldivide (\) Solve systems of linear equations Ax = B for x
mpower (^) Matrix power

Different operators can be used in the same command to perform a
complex arithmetic operator, as in the following command:
>> 1+2.*4-3.^2
ans =
 0

The above calculation also shows the MATLAB respects the
arithmetic order of operations (first power, than multiplication or division
and lastly addition or subtraction). The number can also be grouped
using parenthesis, so as to specify the order of the calculation, as in the
following example:
>> (1+2).*4-3.^2
ans =
 3

Object-oriented Modelling for Scientific Computing88

Matrices and Arrays
MATLAB was primarily developed to work on whole matrices and arrays,
instead of a number at a time. This means that all MATLAB variables are
multidimensional arrays, no matter what type of data. A matrix is a two-
dimensional array often used for linear algebra.An array can be created
by using square brackets and separating each number with a comma or
space. This type of array is a row vector.
>> a = [0, 1, 2, 3]
a =
 0 1 2 3

Another way of creating the same array vector is to use the linspace
command or the colon operator. The linspace command and the colon
operators are used to create equally spaced elements in the row vector.
In this sense, the above array can be recreated using the following
commands:
>> a = linspace(0,3,4)
a =
 0 1 2 3
>> a = 0:1:3
a =
 0 1 2 3

The command linspace(x,y,z) creates a row vector starting at x,
ending at y with z equally spaced elements. The command x:dx:y creates
a row vector starting at x, ending at y with dx step between each value.

To create a matrix with multiple rows, separate the rows using
semicolons.
>> a = [0, 1, 2, 3; 5, 6, 7, 8; 9, 10, 11, 12]
a =
 0 1 2 3
 5 6 7 8
 9 10 11 12

Object-Oriented Development and Programming 89

Special commands can be used to directly create special arrays or
matrices. The command eye(x,y) creates an identity matrix with x rows
and y columns.
>> eye(2,3)
ans =
 1 0 0
 0 1 0

The command ones(x,y) or zeros(x,y) can be used matrixes of ones or
zeros, respectively with dimension of x rows and y columns.
>> ones(2,3)
ans =
 1 1 1
 1 1 1

Operations can be directly performed in a matrix, using the arithmetic
operators presented above. For example, to sum a value of 10 to each
value in a matrix of zeros:
>> b = zeros (2,3)
b =
 0 0 0
 0 0 0
>> c = b + 10
c =
 10 10 10
 10 10 10

It is also possible to perform summation of two matrixes of the same
dimension, in which case each element of the matrix will be summed
accordingly:
>> b = eye(2,3)
b =
 1 0 0
 0 1 0
>> c = [1 2 3; 4 5 6]

Object-oriented Modelling for Scientific Computing90

c =
 1 2 3
 4 5 6
>> d = b + c
d =
 2 2 3
 4 6 6
Suppose that the desired matrix has 6 rows as a repetition of the first two
rows. The user would have to type each number in a very inefficient way.
For this case, the command repmat can be used to replicate the matrix.
The command repmat(x,y,z) replicates the matrix x, y times in the row
direction and z times in the column direction.
>> a = [0:1:3;1:1:4]
a =
 0 1 2 3
 1 2 3 4
>> b = repmat(a,3,1)
b =
 0 1 2 3
 1 2 3 4
 0 1 2 3
 1 2 3 4
 0 1 2 3
 1 2 3 4
Individual elements in a matrix can be referred to using subscripting.
Each element is denoted by a row index and column index respectively.
Suppose the user wants to obtain the element in the 3rd row and the 4th
column:
>> b(3,4)
ans =
 3

Object-Oriented Development and Programming 91

Indexes can also be used to obtain multiple elements. For example, to
extract the elements in the 3rd row, and columns 3 and 4:
>> b(3,[3 4])
ans =
 2 3

The operator semicolon (:) can be used to obtain all the elements of
the row / column.
>> b(:,[3 4])
ans =
 2 3
 3 4
 2 3
 3 4
 2 3
 3 4

In the example above, the semicolon was used as row index, to obtain
the elements of the matrix b in all the rows, in the columns 3 and 4.

Alternatively, a single index can be used to obtain an element of
matrix. MATLAB counts the index down successive columns.

Typing in MATLAB
The following table shows a list of commands that can be used to save
time when typing. If the user wants to repeat a long line typed before, he
can use the arrow keys to repeat the same command:

↑ ctrl - p Recall previous line
↓ ctrl - n Recall next line
← ctrl - b Move back one character
→ ctrl – f Move forward one character
ctrl - → ctrl – r Move right one word
ctrl - ← ctrl – l Move left one word
home ctrl – a Move to the beginning of the line
end ctrl – e Move to end of the line

Object-oriented Modelling for Scientific Computing92

esc ctrl – u Clear line
del ctrl – d Delete character at cursor
backspace ctrl – h Delete character before cursor

ctrl – k Delete to end of line

Saving and Loading of data
The command save can be used to save all the variables present in the
workspace. The following code shows that MATLAB creates a file called
matlab.mat, and inside the file it can be found the variables present in the
workspace, in this case the variables a and b.
>> a = 1
a =
 1
>> b = 2
b =
 2
>> save

Saving to: …..\matlab.mat
Alternatively, an additional argument can be used with the command

save to specify the name of the file.
>> save filename

If more arguments are provided, they specify which variables are to
be saved. In the following example, just the variables a and b are saved
in the file my_variables:
>> save my_variables a b

The variables are saved with double precision binary. To load the
variables from the file, simply type:
>> load my_variables
If it is necessary to save the variables in asci format, the user must add
the argument “-ascii” when saving the file, also specifying the extension
of the file name, as in the following example:
>> save my_variables.dat a b -ascii

Object-Oriented Development and Programming 93

Saves the variables in 8-digit asci to the file named my_variables.dat.
By opening this file, it looks like:
 1.0000000e+00
 2.0000000e+00

Matlab Classes and Objects
In MATLAB, numbers, strings, arrays or any other type of variable is an
object of an appropriate class. For instance:
>> b = 10;
>> c = ‘Hello World’;
>> d = [1 2 3];
>> s.data = 1;
>> whos
 Name Size Bytes Class Attributes
 b 1x1 8 double
 c 1x11 22 char
 d 1x3 24 double
 s 1x1 184 struct

MATLAB has predefined classes, and user- defined classes. Pre-
defined classes are basic classes used in MATLAB language. User-
defined classes are those classes developed by users for perform desired
operations, which can “replace” basic operations, change them or perform
any type of task required by the user. This replacement is called overload.

There are hey terms in object-oriented programming in MATLAB,
used to define the classes and related concepts, which are (MATHWORKS,
2017).

Class definition — Description of what is common to every instance
of a class.

Properties — Data storage for class instances.
Methods — Special functions that implement operations that are

usually performed only on instances of the class.
Events — Messages defined by classes and broadcast by class

instances when some specific action occurs.

Object-oriented Modelling for Scientific Computing94

Attributes — Values that modify the behavior of properties, methods,
events, and classes.

Listeners — Objects that respond to a specific event by executing a
callback function when the event notice is broadcast.

Objects — Instances of classes, which contain actual data values
stored in the objects’ properties.

Subclasses — Classes that are derived from other classes and that
inherit the methods, properties, and events from those classes (subclasses
facilitate the reuse of code defined in the superclass from which they are
derived).

Superclasses — Classes that are used as a basis for the creation of
more specifically defined classes (that is, subclasses).

Packages — Folders that define a scope for class and function naming.

How classes are defined

Definition of classes in files
Classes in MATLAB can be defined in a similar way that functions or
scripts are defined, using .m files. The name of the file must be the same
as the name of the class followed by a .m extension.

A second option is to define classes in folders, instead of a single file.
This type of class definitions is specially useful for long and complicated
classes, with many properties and methods. There are two basic ways of
creating folders that contains class definitions:

Path folder – a folder inside MATLAB path.
Class folder – besides being inside a folder in MATLAB path, the

folder name starts with an @ character followed by the class name, as in:
@BasicClass
If the class is defined in the last way, a file must be dedicated to the

class definition, and other files incorporate methods and properties of the
class.

Object-Oriented Development and Programming 95

Class definition block
The “classdef” block is the MATLAB instruction containing the class
on the beginning of the file, and starting with the keyword “classdef”,
terminating with the “end” keyword.
classdef (ClassAttributes) ClassName < SuperClass
…
end

For instance, the following example is a sealed class named
SecondClass that inherits from the FirstClass class. The sealed attributed
means that other classes can not be derived from this class.
classdef (Sealed) SecondClass < FirstClass
…
end

Properties block
Data and attributes of the class are stored in the properties of it, defined
in the properties block. There is one block of properties for each set
of attribute specifications. The defined attributes and data can also
incorporate initial data values. The properties block starts with the
keyword “properties” and terminates with the “end” keyword.
properties (PropertyAttributes)
…
end

In the following example, a set of private properties (data only
accessible by the class methods) is defined and a default value is given to
“firstproperty”. A second set of property is also defined without special
attributes (public by default) with a property “publicproperty” created
without a default value.
properties (Access = Private)
 firstproperty = 0;
end
properties

Object-oriented Modelling for Scientific Computing96

 secondproperty;
end

Methods block
Functions and tasks performed by the class are defined in method blocks,
one for each set of attribute specifications. This block starts with the
keyword “methods” and ends with the keyword “end”.
methods (MethodAttributes)
…
end

The following example illustrates a public method (no argument is
necessary by default) block with a function used to perform an arithmetic
operation on the properties of the class.
methods
function obj = maths(obj)

obj.Prop3 = obj.Prop1 + obj.Prop2;

end

end

Events block
Events block are defined according a unique set of attribute specifications,
and they contain the names of the events triggered in the body of the
class. The event block starts with the keyword “event” and terminates
with the keyword “end”.
events (EventAttributes)
…
end

The following is an example of a block of protected events with two
events, “StateChange” and “NegativeValue”.

Object-Oriented Development and Programming 97

events (ListenAccess = protected)
 StateChange
 NegativeValue
end

Class Attributes
As mentioned earlier, classes may possess special attributes, declared in
the “classdef” block, before stating the name of the class.
classdef (Attribute1 – value1, Attribute2 – value2,…) ClassName

The following is a list of valid class attributes for MATLAB (MATHWORKS,
2017).

Attribute Name Class Description
Abstract Logical An Abstract class can not be

instantiated.
AllowedSubclasses meta.class object or

cell array of meta.
class objects

Specify subclasses as meta.class
objects that can subclass this
class. In the case of multiple
meta.class objects, use a cell
array {}. An empty array is the
same as a Sealed class.

ConstrutOnLoad Logical If true, the object is constructed
when MATLAB loads the object
from a MAT-file. The construc-
tor should be implemented so
it can have no error if called
without arguments.

HandleCompatible Logical If true, the class can be used as a
superclass for handle classes.

Hidden Logical The class does not appear in the
output of the superclasses or
help functions.

InferiorClasses meta.class object or
a cell array of meta.
class objects

This attribute is used to esta-
blish a relationship of preceden-
ce among classes.

Sealed Logical If true, the class can not be
subclassed.

Object-oriented Modelling for Scientific Computing98

Property Attributes
Attributes can be specified to define the behavior of different properties
in a class. These customizations can be set up to define control access,
data storage or visibility of property. An important aspect to mention is
the fact that subclasses do not inherit the superclass member attributes.

The properties attributes, as mentioned earlier, are declared in the
header of the property block, following the keyword “property”.
properties (Attribute1 – value1, Attribute2 – value2,…)
…
end

The following points shows the valid attributes to all properties defined
inside the block that specifies that attributed (MATHWORKS, 2017).
The values inside parenthesis are the default values for the attribute, in
case it is not specifically changed in the way described above.

Attribute: AbortSet
Class: Logical (false)
Description: In case it is true, MATLAB does not call the set method

for the specified attributed if the same value that was already attributed
is the new value ..

For handle classes, setting this attribute to true also avoid the call of
PreSet and PostSet events.

Attribute: Abstract
Class: Logical (false)
Description: In case it is true, the property has no implementation,

and a concrete subclass must redefine the property with the Abstract
attribute set to false.

Additionally, abstract properties has special characteristics such as:
• They can not define set or get methods.
• They can not define initial values.
• The derived classes must define the same values as the super

class for the SetAccess and GetAcess attributes.
Attribute: Access

Object-Oriented Development and Programming 99

Class: enumeration (public), meta.class object or cell array of meta.
class objects.

Description: If it is set to public, any other class, superclass, subclass
or object may have unrestricted access.

If it is set to protected, only classes and subclasses may have access
to the property.

In the case it is private, then only class members are allowed to access
the property.

Attribute: Constant
Class: logical (false)
Description: Fixes the value of a property for all instances (objects)

of the class if this attribute is set to true. Special features of this attribute
are:

Subclasses which inherits constant attributes cannot change them.
Constant properties cannot be Dependent.
SetAccess is ignored.
Attribute: Dependent
Class: logical (false)
Description: It can spare memory by not saving the property value, in

case it is set to true. The set and get functions cannot access the property
by indexation through the property name. This attribute is useful to
calculate data on demand.

Attribute: GetAcess
Class: enumeration (public)
Description: A list of classes that have access to the property. Can

be set to:
Public: Anything can access the property.
Protected: Only classes and subclasses can access the property.
Private: Access to the property is only allowed by class members

(not from other classes or subclasses).
The attribute defines the classes that have get access to the listed

properties. The classes may be specified as meta.class objects.
Attribute: GetObservable

Object-oriented Modelling for Scientific Computing100

Class: logical (false)
Description: This attribute allows the creation of listeners to access

the listed properties, in case it is set to true. The listeners are called
whenever property values are queried.

Attribute: Hidden
Class: logical (false)
Description: The attribute defines if the listed properties can be

shown in a property list, as the Property Inspector, calls to set or get, etc.
In this sense, hidden properties are not displayed by MATLAB in the
command window, nor the value or the name of it.

Attribute: NonCopyable
Class: logical (false)
Description: The attribute determines if a property is copied if an

instance of the class is copied. NonCopyable attribute can only be set to
true in handle classes.

Attribute: SetAccess
Class: enumeration (public)
Description: Can be defined as:
• Public: Anyone have access to the listed properties.
• Protected: Access is permitted only by classes and subclasses

(no functions or user).
• Private: Access to the listed properties is only permitted by

class members (no subclasses or other classes).
• Immutable – The listed properties can only be set inside the

constructor function.
This attribute is used to list the classes that have set access to the

listed properties in the block. Classes should be specified as a single
meta.class object or a cell array of meta.class objects.

An empty cell array {} of meta.class objects is the same as defining
private access value to this attribute.

Attribute: SetObservable
Class: logical (false)
Description: If it is true and it is a handle class property, then listeners

Object-Oriented Development and Programming 101

can be created to access the listed properties, wherever such properties
are modified.

Attribute: Transient
Class: logical (false)
Description: This attribute specifies which properties are not to be

saved when an instance of the class is saved to a file.

Methods Attributes
The behavior of methods can be changed by defining specific attributes to
them. Such attributes change how access, visibility and implementation
behaves during the lifetime of an instance of the class.

The attributes are specified in the methods block, after the keyword
“methods”.
methods (Attribute1 – value1, Attribute2 – value2,…)
…
end
The supported method attributes are mentioned below, and should be
inserted in the class code according the convention referred above.

Attribute: Abstract
Class: logical (false)
Description: Methods with this attribute have no implementation, but

subclasses can use the line containing arguments when implementing the
method. Such subclasses do not need to necessarily implement the same
number of input and output arguments, although it is recommended to use
the same signature when implementing the abstract method. The method
does not have the function or end keywords, rather only the function
syntax, e.g [x,y] = AbstractFunction(a,b).

Attribute: Access
Class: enumeration (public)
Description: This attribute defines what code can call the listed

method:
Public: Unrestricted access.

Object-oriented Modelling for Scientific Computing102

Protected: Method can only be accessed in classes or subclasses.
Private: Method is only accessible inside the own class members.
Optionally, a list of classes who can access the method can be

provided. This are meta.class objects, listed using cell array. An empty
cell array {} is the same as private access.

Attribute: Hidden
Class: logical (false)
Description: If the hidden attribute is false, the listed methods are

shown using the methods or methodsview commands in MATLAB. The
methods can be hidden from the user or any other object trying to observe
the methods by setting this attribute to true. In this case, the methods will
not be listed when using the commands referred above, and the command
is method does not return true for the hidden method.

Attribute: Sealed
Class: logical (false)
Description: The attribute fixes the method, in the sense that it

cannot be redefined by a subclass. Attempting to do so causes an error in
the subclass.

Attribute: Static
Class: logical (false)
Description: A static method does not depend on an instance of the

class and naturally does not need an object argument.

Typical Workflow to Develop Classes

Defining a Class
This section introduces how to develop a class to represent a familiar
concept in scientific computing. The concept worked on is a generic
storage box (could be a water tank, a boiler, distillation column, an ant
colony, etc), used to store any generic material (or concept, in the most
abstract sense).

The first step is to define the elements and the operations that forms
the abstract storage box. For example, a storage box has:

• An ID (Identification Number), so the user knows to which

Object-Oriented Development and Programming 103

StorageBox object he is referring to specifically.
• An amount of thing inside (balance)
• Optionally a status (full, empty, open, closed, etc)
A list of different operations can be performed in the storage box,

such as:
• Create an object for each storage box
• Add things
• Remove things
• Display the status of the box
• Save and load the StorageBox object
The StorageBox object will have an option that, if the user tries

to remove things when it is already empty, it issues a notice to other
elements that are designated to listen these notices. An Operator object
will be designed to perform this operation over the StorageBox. He will
determine the status of the StorageBox, assigning one of the following
values:

• Full – StorageBox balance has 100 of things.
• Empty - StorageBox balance does not have things (0).
• Open - StorageBox balance has positive value of things.
With these features clear, the properties and methods of the objects

StorageBox and Operator are clearly defined. It is recommended to only
include functionality that meets the requirements or specific objectives of
the program. For instance, if the StorageBox never really gets full, there
is no reason to implement the status “Full” to it. The developed classes
always should have room to be upgraded, so new functionalities can be
added according the demand.

Specify Class Components
Some formal names have to be used in order to identify the properties
that will store each data of the StorageBox. In the present case, we define
the following properties:

• IdentificationNumber: This property is used to store an
identification of the StorageBox object. MATLAB assigns a
value to this property when you create an instance of the class.

Object-oriented Modelling for Scientific Computing104

Only StorageBox class methods can set this property. The
SetAccess attribute is private.

• Balance: This property stores the current amount of “thing”
inside the StorageBox (can be water, heat, ants, or whatever
is being studied). The operation of insert or remove assigns
values to this property. Only StorageBox class methods can set
this property. The SetAccess attribute is private.

• Status — The StorageBox class defines a default value for
this property. The Operator class methods change this value
whenever the value of the Balance falls below 0 or rises above
100. The Access attribute specifies that only the Operator and
StorageBox classes have access to this property.

• BoxListener — Storage for the NegativeAmount and
OverflowedAmount event listener. Saving a StorageBox
object does not save this property because you must recreate
the listener when loading the object.

The operations performed by/at the StorageBox class are:
• StorageBox: Acceps an identification number and an initial

balance to create an object that represents a storage box.
• insert: updates the StorageBox object balance by adding the

specified amount of things.
• remove: updates the StorageBox object balance by removing

the specified amount of things.
• getStatement: Displays information about the storage box.
• loadobj: Recreates the operator listener when you load the

object from a MAT-file.
The events are triggered by the operator inside the methods of the

class. In the present case, the StorageBox class triggers an event when
the removal of things of the box results in NegativeAmount balance.
Therefore, the NegativeAmount event occurs inside the remove method.

On the same principle, the StorageBox class triggers an event when
the addition of things on the box results in OverflowedAmount balance.
Therefore, the OverflowedAmount event occurs inside the insert method.

The definition of events is done inside an events block. The notify
handle class method is responsible of triggering the event.

Object-Oriented Development and Programming 105

StorageBox Class Implementation
The StorageBox class should have only one set of data associated with
one object. To do that, the StorageBox class has to be implemented as
a handle class, as explained in MATHWORKS (2017). All copies of a
given handle object refer to the same data. In this way, it is possible to
generate different references to the same StorageBox, without creating
duplicates or unlinked copies of the same object.

The StorageBox class can be created in a single .m file, as shown
below. Each section of the code is explained using MATLAB comments
(every line of text that starts with a “%”).

StorageBox.m
classdef StorageBox < handle
 % STORAGEBOX inhherits from handle class
 % because it is allowed only one copy of
 % each box.

 properties (Access = ?Operator)
 Status = ‘open’
 % The status is determined by the current balance.
 % Access is limited to the StorageBox class and the
 % Operator class
 end

 properties (SetAccess = private)
 IdentificationNumber
 Balance
 end

 properties (Transient)
 BoxListener
 end

Object-oriented Modelling for Scientific Computing106

 events
 NegativeAmount
 OverflowedAmount
 end

 methods
 function obj = StorageBox(ID,InitialBalance)
 % Constructor method for StorageBox
 obj.IdentificationNumber = ID;
 obj.Balance = InitialBalance;
 obj.BoxListener = Operator.addBox(obj);
 end

 function insert(obj,amt)
 % Adds an amount amt to the balance of the
 % StorageBox obj.
 if obj.Balance > 100
 disp([‘Box ‘,num2str(obj.IdentificationNumber),...
 ‘ is full.’])
 return
 end
 newbal = obj.Balance + amt;
 obj.Balance = newbal;
 if newbal > 0
 obj.Status = ‘open’;
 end
 if newbal > 100
 notify(obj,’OverflowedAmount’)

Object-Oriented Development and Programming 107

 end
 end

 function remove(obj,amt)
 % Removes an amount amt to the balance of the
 % StorageBox obj.
 if (strcmp(obj.Status,’closed’)&& ...
 obj.Balance < 0)
 disp([‘Box ‘,num2str(obj.IdentificationNumber),...
 ‘ has been closed.’])
 return
 end
 newbal = obj.Balance - amt;
 obj.Balance = newbal;
 if newbal < 0
 notify(obj,’NegativeAmount’)
 end
 end

 function getStatement(obj)
 % Generates a short statement of the StorageBox.
 disp(‘-------------------------’)
 disp([‘Box: ‘,num2str(obj.IdentificationNumber)])
 bal = sprintf(‘%0.2f’,obj.Balance);
 disp([‘CurrentBalance: ‘,bal])
 disp([‘Box Status: ‘,obj.Status])
 disp(‘-------------------------’)
 end

Object-oriented Modelling for Scientific Computing108

 end % of methods

 methods (Static)

 function obj = loadobj(s)
 % function used to regenerate the obj from a file.
 if isstruct(s)
 id = s.IdentificationNumber;
 initBal = s.Balance;
 obj = StorageBox(id,initBal);
 else
 obj.BoxListener = Operator.addBox(s);
 end
 end

 end % of methods (Static)
end

Operator Class Implementation
The Operator is a class used to provide services to the StorageBox class. It
is responsible for listening to insertions and removals in the StorageBox,
also to attribute a status according the current balance of the box. When
the StorageBox triggers the NegativeAmount or the OverflowedAmount
events, the Operator resets the StorageBox status.

Because the Operator class has no data, it has no properties. The
StorageBox object stores the handle of the listener object.

The Operator class performs two operations:
• Assign a status to each box as a result of a removal or a insertion

of things
• Adds a box to the system

Object-Oriented Development and Programming 109

Operator Class Components
Basically, the Operator class performs two methods:
assignStatus — Method that assigns a status to a StorageBox object.
Serves as the listener callback.
addBox — Method that creates the NegativeAmount and the
OverflowedAmount listeners.

The Operator class can be created in a single .m file, as shown below.
Each section of the code is explained using MATLAB comments (every
line of text that starts with a “%”).
classdef Operator

 methods (Static)

 function assignStatus(obj)
 if obj.Balance < 0
 if obj.Balance < -200
 obj.Status = ‘closed’;
 else
 obj.Status = ‘overdrawn’;
 end
 end
 if obj.Balance > 100
 obj.Status = ‘overflowed’;
 end
 end

 function lh = addBox(obj)
 lh = addlistener(obj, ‘NegativeAmount’, ...
 @(src, ~)Operator.assignStatus(src));
 lh = addlistener(obj, ‘OverflowedAmount’, ...
 @(src, ~)Operator.assignStatus(src));

Object-oriented Modelling for Scientific Computing110

 end

 end
end

Using the StorageBox class
The intent of this subsection is to demonstrate how MATLAB classes
behave, by creating and manipulating a StorageBox object. First, create
a box with ID “B01”and initial balance of 50 things.
>> BA = StorageBox(‘B01’,50)
BA =
 StorageBox with properties:
 IdentificationNumber: ‘B01’
 Balance: 50
 BoxListener: [1x1 event.listener]
Remove 10 things of the box and check the status:
>> remove(BA,10)
>> getStatement(BA)

Box: B01
CurrentBalance: 40.00
Box Status: open

In order to test the change in the status of the BOX, remove the
remaining 40 + 1 things in the Box and check the status again.
>> remove(BA,41)
>> getStatement(BA)

Box: B01
CurrentBalance: -1.00
Box Status: overdrawn

Object-Oriented Development and Programming 111

Because the balance in the box became negative, the Operator

changed the status of the box to “overdrawn”, so from now on every
method that checks on the status of the box will know that the balance is
a negative value. To check if the Operator is correctly closing the box if
the balance reaches values below -200, remove 200 things of the box and
check the status.
>> remove(BA,200)
>> getStatement(BA)

Box: B01
CurrentBalance: -201.00
Box Status: closed

It can be seen that the status of the box was correctly set to “closed”,
which means that no more things can be removed from the box. To check
if this implementation is correct, try to remove one thing from the box
and check the status again.
>> remove(BA,1)
Box B01 has been closed.
>> getStatement(BA)

Box: B01
CurrentBalance: -201.00
Box Status: closed

When we try to remove one thing from the box now, it generates
a message noticing that the box is closed, so the balance should not
change. This can be checked as above, by generating the statement again
and observing that the balance is the same as before trying to remove one
more thing. The box can be reopened by adding enough things so as the
balance becomes positive again. To do so, add 202 things in the box and
check the status.

Object-oriented Modelling for Scientific Computing112

>> getStatement(BA)

Box: B01
CurrentBalance: 1.00
Box Status: open

It can be observed that the operator correctly changed the status of
the box back to open, since the balance indicates that there is one (1)
positive thing.

Other classes can be derived from this former StorageBox class, to
represent specific volume elements, with additional properties such as the
dimensions of the box, some internal dynamics in the box (e.g chemical
reaction of animal reproduction) and any other property or method that
may be of interest to the developer of the class.

An Example: The “Diffusive” Storage Box network
In this section, we will improve the developed StorageBox by
implementing a system with connected storage boxes that can interact
with one another. Suppose a simple network of three generic storage
boxes (may be water tanks, storage facilities, ant colonies, etc) connected
as the following figure

Figure 27: Simple storage boxes network.

Each box has an initial amount of generic things. Suppose box B01
has 100 things, B02 and B03 has 50 things. We may suppose that there
are connections between the box B01 and B02, and B01 and B03. In
these connections, the things are transferred from one box to another
following a diffusive rule, which means:

Object-Oriented Development and Programming 113

() * = −right leftFlux Constant Box Box

Where Flux is the number of things that are transferred from the
box with more things to the box with less things. The Flux is linearly
proportional to the difference of amount of things in the Box, which
means that the higher the difference of things in the connected boxes, the
higher the flux of things.

In order to evaluate how material is transferred from one box to the
other, it is necessary to simulate the system for some steps, and record the
number of things in the boxes at each time step, as well as the fluxes of
things. For the moment, it is assumed a discrete system, so time will not
be incorporated to the system.

This simple example could be implemented in a spreadsheet such
as Microsoft Excel ®. Supposing that the constant of the connector P01
is equal to 0.1, and the constant of the connector P02 is equal 0.2. The
simulation of 10 steps results in the following table:

step B01 B02 B03 P01 P02
1 100 50 50 5 10
2 85 55 60 3 5
3 77 58 65 1.9 2.4
4 72.7 59.9 67.4 1.28 1.06
5 70.36 61.18 68.46 0.918 0.38
6 69.062 62.098 68.84 0.6964 0.0444
7 68.3212 62.7944 68.8844 0.55268 -0.11264
8 67.88116 63.34708 68.77176 0.453408 -0.17812
9 67.60587 63.80049 68.59364 0.380538 -0.19755
10 67.42289 64.18103 68.39609 0.324186 -0.19464

The following figure illustrates the results for the balances of the
boxes and for the fluxes. It can be seen, as expected for a diffusive system,
that the amount of things in each box converges to the same value, that
is, given enough time of simulation, all of the boxes will have the same
amount of things, independently of the initial condition.

Regarding the fluxes, it reduces progressively as the difference
between the balances of the boxes reduce, until it converges to zero,
given enough simulation time.

Object-oriented Modelling for Scientific Computing114

Figure 28: Balance of the three boxes network.

Figure 29: Fluxes of the three boxes network.

As mentioned before, the implementation of such problem in a
spreadsheet is simple. However, a more complicated network with

Object-Oriented Development and Programming 115

hundreds of boxes and connections may make this type of implementation
unfeasible. That is the reason why it is exemplified here this network in
MATLAB using object-oriented approach.

The StorageBox classes were developed earlier in this chapter, and
it will not be changed. The connections are also a class that stores what
is the box to the right and what is the box to the left, and it calculates the
flux according the equation showed above.

The Pin class is the name that will be used to implement the connectors
of boxes. It most store some information, which is:

• Prev: stores what box is to the left of the connector.
• Next: stores what box is to the right of the connector.
• Const: Is the constant used to calculate the flux. Can be any

positive value. However, very high values may cause unstable
fluxes for this discrete approach. For instance, if the initial
balance of the box to the left is 100 and the box to the right 0,
using a constant of 10. The initial flux will be equal to

()10* 100 0 1000= − =Flux

So, the initial flux will be equal 1000 things, which means that 1000
things will be removed from the box with more things (right one with
100 things) generating a balance of -900 things!

• Flow: Used to store the calculate flow according the equation
mentioned above.

The methods to be implemented in the Pin class are:
• Pin: the constructor method, used to create the object.
• equation: the method that calculates the flux.
The implementation of the Pin class is done in a single .m file Pin.m,

as follows:
classdef Pin < handle
 % Pin class used to connect Boxes

 properties (SetAccess = private)
 Prev % stores the box to the left
 Next % stores the box to the right

Object-oriented Modelling for Scientific Computing116

 Const % proportional constant of the flux
 Flow
 end

 methods
 function obj = Pin(Input,Output,Const)
 % Constructor method
 obj.Prev = Input;
 obj.Next = Output;
 obj.Const = Const;
 obj.Flow = obj.Const.*(obj.Prev.Balance - obj.Next.Balance);
 end

 function equation(obj)
 % Method used to calculate the flow
 obj.Flow = obj.Const.*(obj.Prev.Balance - obj.Next.Balance);
 end
 end % of methods
end

We also inherit this class from the handle class, since it is not desirable
to have different copies of the same Pin object.

It is recommendable to test the developed class, in order to find and
correct any bugs in the code. To do so, create two boxes and connect
them. After that, test if the equation is calculating the correct flux. In the
following example, it is implemented two boxes, B01 and B02, with an
initial balance of 100 and 50, respectively. The boxes are connected with
a Pin P01, with constant of value 0.1. The initial flux should be:

()0.1* 100 50 0.1*50 5= − = =Flux

>> B01 = StorageBox(‘B01’,100)
B01 =
 StorageBox with properties:

Object-Oriented Development and Programming 117

 IdentificationNumber: ‘B01’
 Balance: 100
 BoxListener: [1x1 event.listener]
>> B02 = StorageBox(‘B02’,50)
B02 =
 StorageBox with properties:

 IdentificationNumber: ‘B02’
 Balance: 50
 BoxListener: [1x1 event.listener]
>> P01 = Pin(B01,B02,0.1)
P01 =
 Pin with properties:
 Prev: [1x1 StorageBox]
 Next: [1x1 StorageBox]
 Const: 0.1000
 Flow: 5

Before implementing the simulation itself, it is necessary to be able
to record the data generated during the simulation. To do so in an object-
oriented approach, it is developed a Recorder class, which is responsible
of, at each step of simulation, to record in a matrix the values of the
boxes balances, as well as the generated fluxes between them. To know
which boxes or connector generates data to the recorder, it should have
properties that enables to store such elements. Also, the recorded data is
another property of the class. In summary, the properties of the Record
class are:

• Boxes: it stores the boxes in the system.
• Pins: it stores the connectors in the system.
• States: a matrix to store the recorded balances of each box.
• Flows: a matrix to store the recorded flux of each connector.

Object-oriented Modelling for Scientific Computing118

The only important method of the Recorder class, besides the
constructor itself, is the record function. This method goes through each
box and connector, collecting the current balance or flow data and storing
in an appropriate matrix.

The following code shows the Recorder class, which is written in a
single .m file:
classdef Recorder < handle
 % Pin class used to Record data from simulation

 properties (SetAccess = private)
 Boxes % collection of the boxes in the system
 Pins % collection of the connectors in the system
 States % matrix with balances of the boxes at each step
 Flows % matrix with fluxes of the connectors at each step
 end

 methods
 function obj = Recorder(Boxes,Pins)
 % Constructor method
 obj.Boxes = Boxes;
 obj.Pins = Pins;
 obj.States = zeros(1,length(Boxes));
 obj.Flows = zeros(1,length(Pins));
 end

 function record(obj,count)
 % The “main” method of the recorder, used to save in the matrix
 % the recorded data of box balances and connector fluxes
 for i=1:length(obj.Boxes)
 obj.States(count,i) = obj.Boxes(i).Balance;
 end

Object-Oriented Development and Programming 119

 for i=1:length(obj.Pins)
 obj.Flows(count,i) = obj.Pins(i).Flow;
 end
 end
 end % of methods
end

It is recommendable to test the Recorder class in order to know if has
any bug and if all the methods and properties are working as expected. In
the following code, we use the previously developed boxes B01 and B02,
with the connector P01 and record the data available in the line 10 of the
matrices of States and Flows of the Recorder R01 object.
>> R01 = Recorder([B01 B02],[P01]);
>> record(R01,10)
>> R01.States
ans =
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 100 50
>> R01.Flows
ans =
 0
 0
 0
 0

Object-oriented Modelling for Scientific Computing120

 0
 0
 0
 0
 0
 5

The next step to simulate the network of boxes is to develop the
Simulator class itself. One again, it is undesirable to have copies of the
same Simulator in different parts of the program, so this class also should
inherit from the handle class. The Simulator, for the moment, may have
only one data, that is the Recorder object. To simulate for a given number
of steps, a method is used with the Simulator object and the number of
steps as arguments for the function.

The simulate function uses a for loop to, at each step, simulate the
system, record the data using the recorder and update the balances of the
boxes.

The following code shows the implementation of the Simulator class,
in a single .m file.
classdef Simulator < handle
 % Simulator class inhherits from handle class
 % because it is allowed only one copy of
 % each simulator.

 properties (SetAccess = private)
 Recorder
 end

 methods
 function obj = Simulator(Recorder)
 % Simulator constructor method
 obj.Recorder = Recorder;
 end

Object-Oriented Development and Programming 121

 function simulate(obj,numsteps)
 % The “main” function of the Simulator
 % numsteps are the number of steps used to simulate
 for j=1:numsteps
 for i= 1: length(obj.Recorder.Pins)
 % simulate the system using the connectors equation
 equation(obj.Recorder.Pins(i));
 end
 % record the data using the Recorder object
 record(obj.Recorder,j);
 for i= 1: length(obj.Recorder.Pins)
 % update the balance of the boxes by adding / removing
 % the flows
 remove(obj.Recorder.Pins(i).Prev,obj.Recorder.Pins(i).Flow)
 insert(obj.Recorder.Pins(i).Next,obj.Recorder.Pins(i).Flow)
 end
 end
 end
 end % of methods
end

To test the Simulator class, it may be directly implemented the
example mentioned at the beginning of this subsection. In resume, three
StorageBox objects are implemented, B01, B02 and B03 and two Pin
objects, P01 and P02 with 0.1 and 0.2 as the flux constant respectively.
A recorder R01 is used to record the data of the simulation. A simulator
S01 is used to simulate the system. In order to approach the time that all
the balances are equal, the simulator uses 100 steps.

This simulation is named test1.m
B01 = StorageBox(‚B01‘,100);
B02 = StorageBox(‚B02‘,50);

Object-oriented Modelling for Scientific Computing122

B03 = StorageBox(‘B03’,50);
P01 = Pin(B01,B02,0.1);
P02 = Pin(B01,B03,0.2);
R01 = Recorder([B01 B02 B03],[P01 P02]);
S01 = Simulator(R01);
simulate(S01,100);
States = S01.Recorder.States;
Flows = S01.Recorder.Flows;
figure
plot(States,’-+’)
ylabel(‘Balances’)

figure
plot(Flows,’-o’)
hold on
ylabel(‘States’)

The generated results for the balances of the boxes is shown in the
figure below, followed by the calculated fluxes between the boxes.

Figure 30: Balances of the three boxes network example – Object-Oriented
implementation.

Object-Oriented Development and Programming 123

Figure 31: Fluxes between the three boxes – Object-Oriented implementation.

For this case, it can be seen that approximately in the step 40 (forty),
the fluxes are already almost zero (less than 0.01) and the balances of the
boxes converges to a similar value (in this case, approximately 66.6667).

JAVA
While not by nature a scientific computing language, Java has grown in
use since it is naturally object-oriented. According Boisvert (2001), Java
is portable at both the source and object format levels. Both the source
format for Java (a .java file) and the object format (the bytecode in a
.class file) are expected to behave the same on any computer with the
appropriate Java compiler and Java virtual machine. Second, Java code is
safe to the host computer. Java implements a simple object-oriented model
with important features (e.g., single inheritance, garbage collection) that
facilitate the learning curve for newcomers. But the most important thing
Java has to offer is its pervasiveness, in all aspects. Java runs on virtually
every platform Universities all over the world are teaching Java to
their students. Many specialized class libraries, from three-dimensional
graphics to online transaction processing, are available in Java.

However, according to the same author there are still some issues to
be addressed. It fails to provide some of high-level numerical features,
such as complex numbers and true multidimensional arrays.

Object-oriented Modelling for Scientific Computing124

Basic Java language characteristics
The first main characteristic of Java language is that it is a compiled
language. This is an important feature when compared with some other
languages used for scientific computing such as MATLAB, which is an
interpreted language. The fact that Java is compiled means that the code
is converted into bytecodes, which makes it very fast.

The syntax in Java is free formatted. This means that the use of
indentation in the code and blank lines are free and does not change
the significance in the code. The coding blocks are formed using clear
delimiters, such as “;” and “{}”.

Variables in Java must be declared before use, and any error in the
program can be identified during compilation rather than during the
program run. These features make Java a self-documenting language,
and highly suitable for large-scale software systems.

The fact already mentioned that Java is naturally object-oriented
facilitate the programming procedure and organization of the software,
as the program parts are separated in modules called classes, and objects
are created in runtime, to define a specific problem domain.

Java primer
To start developing java programs in our machine, it is necessary to
have a compiler so the text code can be translated and run. For simple
programs, contained in a single file, an available option it to use online
compilers. Such compilers are web pages where the user provides the
code, the web site has a compiler embedded with translates the .java file
to the .class and .jar file. One example of a free online compiler is https://
www.compilejava.net/.

A second option, which is better specially for more complex programs
is to obtain and install a compiler in the computer. The following are the
major Java compilers:

• The Java Programming Language Compiler (javac), included
in the Java Development Kit from Oracle Corporation, open-
sourced since 13 November 2006.

• GNU Compiler for Java (GCJ), a part of the GNU Compiler
Collection, which compiles C, C++, Fortran, Pascal and other

Object-Oriented Development and Programming 125

programming languages besides Java. It can also generate
native code using the back-end of GCC.

• Eclipse Compiler for Java (ECJ), an open source incremental
compiler used by the Eclipse project.

A third option is, instead of obtaining only the compiler, to obtain
an Interactive Development Environment (IDE), where the developer is
able to write, compile and run the code in a single piece of software,
making the development much faster. Again, there are a series of options
available:

• NetBeans: open source solution for coding Java. It supports
development of all Java application types (Java SE, JavaFX,
Java ME, web, EJB and mobile applications). It has an
advantage of being modular by design, so it can be extended
through plugins to enhance functionality. Besides that, it
also supports other languages (PHP, C/C++ and HTML5). It
is multi-platform (Microsoft Windows, Mac OS X, Linux,
Solaris and other platforms supporting a compatible JVM) and
can be used for work in Cloud applications, integrated with the
Google App Engine.

Figure 32: NetBeans screenshot. Source: http://wiki.netbeans.org/Net-
beansUML

Object-oriented Modelling for Scientific Computing126

Eclipse: Besides providing the separate compiler, Eclipse is a cross-
platform IDE which allows software development either for mobile,
desktop, web or enterprise domains. The software contains a base
workspace with an extensible plug-in system to customize the IDE. The
plugins also enable the development of softwares in a series of other
programming languages (C, C++, JavaScript,, Perl, PHP, Prolog, Python,
R, Ruby).

Figure 33: Eclipse screenshor. Source: http://www.eclipse.org/screenshots/#.

IntelliJ IDEA Community Edition: A free Java IDE mainly used
for Android App development, Scala, Groovy, Java SE and Java
programming. It has special features such as a visual GUI builder, code
completion, code inspection among others. There is a commercial edition
with additional features and it can be purchased if the developer requires
such resources.

Object-Oriented Development and Programming 127

Figure 34: IntelliJ IDEA Community Edition screenshot. Source: https://mhre-
views.files.wordpress.com.

AndroidStudio: This Java IDE from Google is specifically designed
for development of Android apps. Nevertheless, it is capable of running
and editing some Java code.

Figure 35: Android Studio screenshot. Source: https://img.utdstc.com.

Object-oriented Modelling for Scientific Computing128

BlueJ: A software directed for education purposes. Nonetheless, it is
also appropriate for small scale software development. It uses JDK (Java
Development Kit) as a support tool to run. The main screen graphically
shows the class structure of an application under development and objects
can be interactively created and tested. This interaction facility, combined
with a clean, simple user interface, allows easy experimentation with
objects under development and this allows beginners to get started more
quickly, and without being overwhelmed (IDR Solutions, __).

Figure 36: BlueJ screenshot. Source: https://bluej.soft32.com/
DrJava: A free Java Ide designed mainly for educational purposes.

It is extremely lightweight and it provided an intuitive interface and the
possibility to interactively evaluate the code. Its main feature is for it to
be used as a unit testing tool, a source level debugger, an interactive pane
for evaluating text of the program, intelligent program editor and can be
used for more depending on your requirements (IDR Solutions, ___).

Object-Oriented Development and Programming 129

Figure 37: DrJava screenshot. Source: http://www.drjava.org.

To develop the code shown in the following sections, the book authors
chose to make use of DrJava IDE. The reasons are its intuitive and easy
use, as well as it lightweight, which makes it possible to use even from
a USB stick, without any installation. The software can be downloaded
directly from the website http://www.drjava.org.

Developing the first program in Java
This sections introduces Java programming by showing a simple and
classic example, the Hello World program. The main task of the program
is to print a message in the screen (Hello World! Or any other message that
the developer desires) and exit the program. Although without being of
any practical use, this program helps the reader to grasp some principles
in Java programming. The authors used Windows platform and DrJava
IDE to develop the code.

To start an empty folder is created, in any place that the reader desires
(e.g C:\Java). We create an empty text file inside this folder by navigating
to it, right clicking anywhere and choosing the options to create a text
file. Initially Windows gives a default name “New Text Document.txt”. It

Object-oriented Modelling for Scientific Computing130

is necessary to change not only the name of the file but also the extension.
Because it is being developed a java program, the extension must be
.java. So, the file is renamed to “HelloWorld.java”. After that, open the
file and type the following code:
 public class HelloWorld {
 public static void main(String[] args) {
 // Prints “Hello, World” in the terminal window.
 System.out.println(“Hello, World”);
 }
}

Save the file and close it. The program Hello World was just written,
but in order to run, it is necessary to compile the code- The compilation
can be done using the DrJava. First start the IDE by clicking on it wherever
it was downloaded. Once the program starts the following window is
shown (Windows platform).

Figure 38: Initial window of DrJava (Windows platform).

Object-Oriented Development and Programming 131

To open the HelloWorld.java file in the IDE, use the Open button on
the toolbar and search the file, or simply drag and drop it from the folder
to the IDE. Once the field is imported, the text code is shown in the main
window of DrJava. To compile the code, go to Tools > Compile Current
Document. If this is no error, a message appears on the bottom window
of the program with the message “Compilation Completed”. With this,
a new file is created at the same directory of the .java file, with the same
name but the .class extension.

To see if the program runs, go to Tools > Run Document. With this,
the bottom window shows some messages and the result of the program
after the line “> run HelloWorld”. It printed the message and exited, as
it was expected.

Alternatively, after compiling the .class program can be run in a
command prompt, by issuing the command “java HelloWorld” and see
the output on the screen.

Java basic language elements (Data types)
A native language element or a data type is a set of values, with determined
operations performed on them. In Java, there are primitive types and
reference types. The primitive types are summarized in the following
table

Type Set of values Sample values

int Integer 1 20 98754

double Floating-point num-
bers

 2.9191 2.02e45

boolean Boolean values true false

char Characters ‘A’ ‘1’ ‘\n’

String Sequence of charac-
ters

“AB” “Hello”
“2.98”

And the reference types are:

Object-oriented Modelling for Scientific Computing132

• Reference to objects;
• Type name is the same as class name;
• Variables hold references to dynamically allocated memory

space.

Integer
An integer is any whole number between -231 and 231 – 1 (−2,147,483,648
to 2,147,483,647).

Floating-point number
The double data type represents floating-point numbers which can be
used in scientific applications. This type of data can be represented using
a point as decimal separator (i.e 1.22) and accepts scientific notation (i.e
1.2e3 for 1.2*103). A series of different operations with this type of data
is native in Java, as illustrated in the following table:

Expression value

1.27 + 2.1 2.37

1.27 – 2.1 -0.83

1.27 / 2.1 0.60476…

2.1 % 1.27 0.83

1.0 / 0.0 NaN

Math.sqrt(3.0) 1.732….

Math.sqrt (-3.0) NaN

Boolean values
This data type can assume only two values: true or false. The basic
operations with Booleans are shown in the table below.

Operator Name Operator symbol Definition
And && a && b is true if both a and b

are true.

Object-Oriented Development and Programming 133

Or || a || b is true if either a or b is true.
Not ! !a is true if a is false, otherwise

is true

Comparison operators are a special type of operators that generates
Boolean results by comparing int or double data types. The following
table shows some examples of these operators.

Operator Operator symbol True False

Equal == 2 == 2 2 == 2.1

Not equal != 2 != 3 2 != 2

Less than < 2 < 3 2.1 < 2

Less than or equal <= 2 <= 2 2 <= 1

Greater than > 3 > 2 2 > 3

Greater than or equal >= 3 >= 3 2 >= 3

Strings
A string is a sequence of characters. They may be concatenated using “+”
operator.
String str1 = “anystring”;
String str2 = “12”;
String str3 = str1 + str2;

In a Java program, the basic data types are used to construct objects
that can communicate with each other via their methods. There are four
main concepts in the object-oriented programming in Java:

• Object: Structures with state(s) (variable or not during the
program lifetime) and behaviors. For instance, a specific
car has a color, number of wheels, power and speed. It has
behaviors such as change gear, accelerate/ brake, reserve, stop,
turn on or off.

• Class: A template to generate objects. The car example
mentioned above, as a template for specific car objects, is a
class.

• Methods: The methods of a class define its behavior. A class
may contain a single method or different methods. Every data
manipulation, executed action and state change is done through
the methods of the object / class.

Object-oriented Modelling for Scientific Computing134

• Instance variables: Objects defined using the classes have a
specific set of instance variables.

 Java basic methods
A statement is declared using the following rule
<type> identifier;
<type> identifier = <initial value(s)>;

Java is case sensitive. This means that the identifiers x and X have
different meaning. The following are some examples of statements:
int x = 24;
int y,z = x, 25;
double[] exarray = {1.1, 2.4, 9};
Point2D p1 = newPoint2D(1.2,5.6);

A class is identified using the keyword class and a name of the class
starting with upper case. Conventionally, each first letter of the words
inside the class name should also be in upper case.
class MyClassTemplate

The methods defined inside the class start with a lower case and
conventionally each first letter of the words inside the methods name is
in upper case.
public void myJavaMethod

The name of the program file is exactly the same as the name of the
class defined inside it, using the same upper and lower cases as the class
name, with the extension .java at the end of the name. For instance, if
there is a class called SportCar, then the name of the file containing this
class should also be SportCar.java.

Java program processing always starts from the following method:
public static void main(String args[])

The following table gives a list of reserved words in Java syntax.
These keywords can not be used to generate variables, constants or any
other identifier names.

Object-Oriented Development and Programming 135

abstract assert boolean break

byte case catch char

class const continue default

do double else enum

extends final finally float

for goto if implements

import instanceof int interface

long native new package

private protected public return

short static strictfp super

switch synchronized this throw

throws transient try void

volatile while

Comments can be used throughout a program to give information
regarding the code. The comments are ignored by the compiler, so they
are used only for informative purposes. In Java, comments in a single
line starts with a “//”. In the case that it is necessary to do a multi-line
comment, the first line starts with the “/*”, and every following line
starts with the “*”. The last line of the comment ends with the “*/”. The
following gives example of commenting in Java.
// this is a single line comment.
int x = 24;
/* this is second way of writing a single line comment. */
int y = x;

Object-oriented Modelling for Scientific Computing136

/* this is
* a comment that
* spans three lines. */

Conditional statements and loops
Conditional statements define block of codes that only runs with a certain
condition or set of conditions are met.

Loops are special language structures in programming used to
repeat a block of code for a certain amount of times, according defined
condition(s).

An if statement is used to run a block of code, as long as condition(s)
is (are) met. The Java syntax for this type of conditional statement is
exemplified below:
if (a > b)
{
 String mystring = “abcd”;
 b = a + 1;
}

A while block is used to repeat a block of code, while a specified
condition is met. The use of this syntax allows the developer to execute
a grouped statement as many times as necessary, without rewriting the
same code over and over again.
int a, b = 10, 1; // initialize the necessary variables
while (a > b)
/* the loop only starts and repeats as long as
* the conditions are met. */
{
 String mystring = “abcd”;
 b = a + 1;
}

An important thing to keep in mind is that infinite loops should be
avoided. Infinite loops happen when the program enters in the loop block

Object-Oriented Development and Programming 137

and the program never reaches the condition necessary for it to exit.
The for loop is used to run a specified block of code in a determined

amount of times. A variable is used to start the loop, and a loop continuation
condition is defined, as well as the rule of incrementing/ decrementing
the variable.
int n = 10; // initialize necessary variable
int inc = 2;
for (int i = 0; i <= n; i++)
{
 inc = inc * i;
}

Additional constructs and statements can be used in order to elaborate
more on the conditional blocks. If it is necessary to exit a loop statement
without necessarily reaching its end condition, a break statement can be
used.

There are also situations when it may be necessary to jump to the
next iterations of the loop. In this case, a continue statement can be used
inside a loop, transferring the flow of control directly to the increment
statement of the next iteration loop.

In the case that, instead of only one or two conditions are to be
considered, there a list of options may be necessary, the switch statement
can be used.

The analysis if a condition is met can be calculated before the loop or
the conditional statement, using Boolean values. The conditional operator
“?”: is a ternary operator (three operands) that enables you to embed a
conditional within an expression. The three operands are separated by the
“?” and “:” symbols. If the first operand (a boolean expression) is true,
the result has the value of the second expression; otherwise it has the
value of the third expression (Sedgewick & Wayne, 2007).

Object-Oriented characteristics of Java

Inheritance
Inheritance is the way that a class acquires properties and methods from
another. It enables the development of programs in a hierarchical order.

Object-oriented Modelling for Scientific Computing138

The class above, possessing definitions of the inherited properties and
methods is called superclass, parent class or base class while the class that
acquires such properties and methods is referred to as subclass, derived
class or child class. This type of relationship is called is a relation. For
example, a Sport Car is a (specialized type of) Vehicle. So, Vehicle would
be a superclass defining general methods and properties, while the Sport
Car inherits all these properties and may have some specific ones, which
does not interfere with the Vehicle class.

In Java, a subclass is defined by using the keyword extends followed
by the name of the superclass. Example:

Class MySuperClass {

}
Class MySubClass extends MySuperClass {

}

To clarify, in the following example it is written two types of data, a
generic Data and a specialized version of Data, Vectorial Data. The only
method that it has is to print the data. The Vectorial Data runs the same
method as the superclass, and additional code is added to its method. The
superclass Data is defined as:
class Data {
 int datetime;
 double value;

 void showdata() {
 System.out.println(“Date Time:”+datetime);
 System.out.println(“Value:”+value);
 }
}

There are two attributes of this class, datetime and value. These
attributes are also inherited to the following child class, which overrides
the method showdata by adding more code. The overriding characteristics

Object-Oriented Development and Programming 139

of Java will be described in the next subsection.
class VectorialData extends Data {
 String direction;

 void showdata(){
 super.showdata();
 System.out.println(“Direction:”+direction);
 }
}

In the same file, a class named DataInheritance runs the main
program. It generates one instance of the generic data and prints, and
another instance of the specialized vectorial data, and prints. The file
must be saved with the same name as this main class (DataInheritance).
class DataInheritance
{
 public static void main(String[] args) {
 Data data1 = new Data();
 data1.datetime = 20170101;
 data1.value = 1;
 data1.showdata();

 VectorialData vecdata1 = new VectorialData();
 vecdata1.datetime = 20170102;
 vecdata1.value = 1.5;
 vecdata1.direction = “south”;
 vecdata1.showdata();
}
}

Once the code is compiled and run, the following output is obtained.
> run DataInheritance
Date Time:20170101

Object-oriented Modelling for Scientific Computing140

Value:1.0
Date Time:20170102
Value:1.5
Direction:south

So, the Vectorial Data class inherited from the superclass its attributes,
and extends it to have additional attributes and possibly methods. Other
classes could also be inherited from the same superclass, without
affecting the Vectorial Data subclass. Additionally, subclasses may also
be derived from the subclass Vectorial Data, producing even more and
more specialized classes, as the following example:

Figure 39: Example of inheritance of classes.

Overriding
Overriding consists on the ability writing over a previously defined
method, redefining or extending it.

There are some advantages on overriding, such as to define a behavior
according specific characteristic of the subclass, which means that a
subclass implements a superclass method according its requirement.

Rules are well established for methods overriding:
• The argument list should be the same as that of the overridden

method. Ex: the method run (double km, double velocity)
should be overridden with a function that also admits two
arguments.

• The type which is returned should be the same or a subtype of

Object-Oriented Development and Programming 141

the return type declared in the superclass method.
• Access level can be extended, but not restricted. This means that

a superclass method declared as public cannot be overriding
by a private or protected method.

• Only inherited methods can be overridden.
• The keyword final avoids a method to be overridden.
• A static method may not be overridden, but can be re-declared.
• Constructors can not be overridden.

Polymorphism
Polymorphism is defined as the capability of an object to assume different
forms. A common case of polymorphism in OOP is when a superclass
reference is used in order to refer to a subclass object.

Polymorphism is tested by applying more than one IS-A test. If the
object can pass this test, then it is said to be polymorphic. All objects
in Java are polymorphic since any object will pass the IS-A test. The
following is an example of such case:
public interface Carnivorous{}
public class Animal{}
public class Lion extends Animal implements Carnivorous{}

Lion is considered to be polymorphic, since it has multiple inheritance.
The following IS-A tests can be successfully applied to the Lion class:

• Lion IS – A Carnivorous
• Lion IS . A Animal
• Lion IS – A Lion
• Lion IS – A Object
Having passed on these tests, the following statements can be applied

to the Lion object reference without errors:
Lion l = New Lion();
Animal a = l;
Carnivorous c = l;
Object o = l;

Object-oriented Modelling for Scientific Computing142

The reference variables a, c and o refer to the same Lion l object.

Abstraction
In Object-Oriented programming, abstraction is the capability of
hidden from the user the process of implementation, providing only the
functionality necessary. In summary, the user has the information on
what the object does instead of how it does it. This process is achieved in
Java using Abstract classes and interfaces.

Abstract classes can contain abstract methods, but not necessarily.
An abstract method is a method without body. Nonetheless, if the class
contains at least one abstract method, then it must be declared as an
abstract class. Abstract classes can not be instantiated. Once a subclass
is developed from an abstract class, it must provide implementation to
all the present abstract methods in the superclass. The following is an
example of an abstract class.
/* File name : Shape.java */
public abstract class Shape {
 private String name;
 int pointx;
 int pointy;

 public Shape(String name, int pointx, int pointy) {
 System.out.println(“Constructing a Shape”);
 this.name = name;
 this.pointx = pointx;
 this.pointy = pointy;
 }

 public double computeArea();

 public void computePerimeter();

 public String getName() {

Object-Oriented Development and Programming 143

 return name;
 }
}

Encapsulation
Encapsulation is the ability of packing data (variables) and methods
(function) into a single unit. When encapsulated, data from one class is
hidden from other classes, and can only be accessed though the methods
of their current class. Because of that, encapsulation is also referred to as
data hiding.

Encapsulation can be done in Java by declaring variables of a class
as private, and providing public setter and getter methods to modify and
view the variables values.

Advantages of encapsulation are, among many, the ability of making
some specific attributes read-only or write-only and the class can be over
total control of what is stored in its fields.

Interfaces
An interface is a similar data type to classes, in the sense that it is a
collection of abstract methods. A class implements an interface,
inheriting the abstract methods of the interface. An interface may also
have constants, default methods, static methods and nested types. Only
default and static methods may have bodies. All the others are declared
only.

An interface defines the functions or behaviors that a class implements.
Nonetheless, writing an interface is analogous to writing classes. Once a
class implements an interface, it must also define all its abstract methods,
or be also defined as abstract.

The definition of an interface is done inside a .java file, with the name
of the file equal to the name of the interface. The compiled code of the
interface is generated in .class file. Like classes, interfaces may appear in
packages, and their bytecode file must be in a directory structure that has
the same name as the package name. Like abstract classes, an interface
can not be directly instantiated.

To declare an interface, use the keyword interface, as in the following

Object-oriented Modelling for Scientific Computing144

example:
/* File name : myInterface.java */
import java.lang.*;
// Any number of import statements
public interface myInterface {
 // Any number of final, static fields
 // Any number of abstract method declarations\
}

Packages
Packages are groups of related types (classes, interfaces, enumerations
and annotations) which can provide access protection and namespace
management. They are especially useful to prevent naming conflicts, to
make searching/locating and to define the use of classes, interfaces, etc
simpler.

Examples of existing packages in java that may be mentioned are:
• java.lang − bundles the fundamental classes
• java.io − classes for input, output functions are bundled in this

package
When creating a package, the developer must follow some guidelines.

At the top of every source file, a package statement must be clearly stated
in the first line of the source file, and each source file can contain only
one package statement with the classes, interfaces, enumerations, and
annotations that are included in the specific package.

To use packages in the program, the file has to be compiled with
a directive specifying the package that has to be included. With this, a
folder with the given package name is created in the specified destination,
and the compiled class files will be placed in that folder.

To use classes in defined in different files but still in the same package,
the package name must be used in the top of the file. In case one class
need to refer to another class in a different package, there are three ways
of accomplishing this:

The package keyword followed by a dot and the full name of the
class can be used as in:

Object-Oriented Development and Programming 145

package.myClassName
Another option is to directly import the class using the keyword

import and the wild card (*).
import package.*

A third way is to use the keyword import and the name of the class
itself, with the keyword package and a dot preceding it.
import package.myClassName

Once a class is placed on a package, the name of the package becomes
part of the name of the class (mypackage.MyClass for example),

Data structures
Data structures are important Java utilities and can be used to perform a
variety of operations, especially for scientific computing. Some of them
which may be mentioned are:

• Enumeration
• Bitset
• Vector
• Dictionary
• Hashtable
• Properties

Enumeration
Enumeration is an interface which allows organize elements in such a
way that methods can be used to retrieve them as a collection of objects.
It is a useful type for iterations where it may be necessary to go through
each element of an array of objects. The enumeration interface defines
two methods:

• Boolean hasMoreElements () – As the name shows, this
method is used to check if all elements of the enumeration
where already extracted(false), or if there are still elements to
be extracted (true).

• Object NextElement () – This method is used to extract the
next element in the queue of the enumeration.

Object-oriented Modelling for Scientific Computing146

BitSet
This class implements a set of bits or flags that can be treated individually
(set or deleted). This is particularly useful if the program makes use
of a large set of Boolean values and they need to be set and cleared as
appropriate.

There are two ways of generating a BitSet, using one of the two
constructors mentioned below:
BitSet () – Default BitSize object creation.

BitSize (int size) – An initial size of the object can be defined in the
constructor, specifying the number of bits that it can hold. The initial
value of the bits is zero.

Vector
The vector is a flexible class which works in the same ways as an array
in Java, although it can grow to accommodate more elements. The
accessibility of elements in a vector is done through indexing. Vectors
are constructed using one of the following directives:

• Vector () – Default constructor, with an initial size of 10
elements.

• Vector (int size) – Optionally the developer can assign the
initial size of the vector.

• Vector (int size, int cr) – Besides the initial size, the developer
can specify the increment, which defines the number of
elements that the vector grows every time it exceeds its
maximum capacity.

• Vector (collection C) – This constructor creates a vector and
apply each element in the collection c to a position in the
Vector instance.

In the following table is listed some of the methods of the vector
class.

Method Return (void me-
ans no return)

Description

add (int index, object element) void Inserts the element in the position
specified.

Object-Oriented Development and Programming 147

add (Object element) boolean The element is added to the end
of the vector.

addAll (Collection C) boolean Inserts all the elements of the
collection at the end of the vector.

addAll (int index, Collection C) boolean Adds all the elemennts of the col-
lection in the specified position.

capacity () Int Returns the size of the vector.

clear () void All the elements of the vector are
removed.

Applications in Scientific Computing

Square root Calculator
The following application is a program developed to calculate a
reasonable approximation of the square root of any positive number
using object-oriented programming in Java. The algorithm used is the
Newton-Raphson method for root finding, which reads:

()
()1 + +
′

= n
i n

n

f x
x x

f x

Where 1+ix is the approximation of the root of ()nf x . The function to calculate
the square root of any number can be expressed as:

() 2 = −nf x x S

Where S is the number which it is desired to know the root, and x is
the root itself. Applying this function in the Newton-Raphson algorithm,
one obtains:

()
()

2

1
1

2 2+

 −
= + = = + 

′
+


n n

i n n n
n n n

f x x S S
x x x x

f x x x

This iterative algorithm is used to find an approximation of the root
of any number, as long as it is positive.

The main Java program used to solve this problem is divided into 3
classes. The first class prints the values of :the current iteration;

Object-oriented Modelling for Scientific Computing148

• the current root approximation value;
• the approximation error
The following code illustrates this class, which is here called

ScreenOutput:
class ScreenOutput {

 void updateScreen(int i, double xi, double x0)
 {
 System.out.print(i);
 System.out.print(“ “);
 System.out.printf(“%.3f”,xi);
 System.out.print(“ “);
 System.out.printf(“%.3e”,Math.abs(xi - x0/xi));
 System.out.println(“ “);
 }

 void printHeader()
 {
 System.out.println(“It x Error”);
 }
}

The class has no data, and two methods. The first one (updateScreen)
is used to print in the screen the value of the variables of interest at each
iteration step. The second method (printHeader) prints a header which
should be placed before starting the iterations.

The second class used in the program calculates at each iteration the
root approximation using the Newton-Raphson algorithm mentioned
above. The code reads:
class SqrtAlgorithm
{
 double x0;

Object-Oriented Development and Programming 149

 double xi;
 double epsilon;

 void updateFcn()
 {
 xi = (x0/xi + xi) / 2.0;
 }
}

The class has three properties, or states, which are used to calculate
the root approximation at each iteration. The property epsilon is the
acceptable error of the calculation.

The third class, which forms the core of the program, accepts two
arguments from the user: the number that the user wants to know the
root, and the acceptable error. The program than writes a small reader
to indicate that it has started and creates instances of the two other
classes. These instances are used to do the calculations and the necessary
screenoutput. The code of this class reads:
public class Sqrt {
 public static void main(String[] args) {
 // read in the command-line argument
 double x0 = Double.parseDouble(args[0]);
 double epsilon = Double.parseDouble(args[1]);
 // repeatedly apply Newton update step until desired precision is
achieved
 System.out.println(“==================”);
 System.out.println(“SQUARE ROOT CALCULATOR”);
 System.out.println(“==================”);
 ScreenOutput scrout1 = new ScreenOutput();
 SqrtAlgorithm algo = new SqrtAlgorithm();
 algo.xi = x0/2; // estimate of the square root of c
 algo.epsilon = epsilon; // maximum error
 algo.x0 = x0;

Object-oriented Modelling for Scientific Computing150

 scrout1.printHeader();
 if (algo.x0 >= 0)
 {
 int i = 0;
 scrout1.updateScreen(i, algo.xi, algo.x0);
 while (Math.abs(algo.xi - algo.x0/algo.xi) > algo.epsilon*algo.xi) {
 i++;
 algo.updateFcn();
 scrout1.updateScreen(i, algo.xi, algo.x0);
 }
 // print out the estimate of the square root of c
 System.out.println(algo.xi);
 }
 else
 {
 // print out an error message
 System.out.println(„Error. No root of negative value!“);
 }

 }

}
The next step is to test the developed algorithm. A good methodology

to start doing is to use values which the analytical square root is already
know. In this way, we can measure the analytical error and if the program
has any bugs.

We may start by using the program to calculate the square root of the
number 9. It is already knowing that:

9 3=

Object-Oriented Development and Programming 151

It is expected that the program may not fall exactly in the analytical
square root of the number, as numerical approximation is used, which
admits some error. So, we may start admitting a relatively large error of
0.1. This means that the calculated square root should fall somewhere
inside the interval [2.95,3.05]. One the program runs, it generates the
following output:
> run Sqrt 9 0.1
==================
SQUARE ROOT CALCULATOR
==================
It x Error
0 4.500 2.500e+00
1 3.250 4.808e-01
2 3.010 1.920e-02
3.0096153846153846In the program, we fixed the initial guess to be
always half of the value inputted by the user, which may be good in some
cases, but not so much for others. The program takes 2 iterations to arrive
in the value 3.0096, with an error less than 2E-2, or 0.02.

Next, we test the algorithm to find a much better solution using a
smaller acceptable error, 1E-15 (the number 1 with 15 zeros to the left
side). The output of the program is the following:

> run Sqrt 9 1e-15
==================
SQUARE ROOT CALCULATOR
==================
It x Error
0 4.500 2.500e+00
1 3.250 4.808e-01
2 3.010 1.920e-02
3 3.000 3.072e-05
4 3.000 7.864e-11

Object-oriented Modelling for Scientific Computing152

5 3.000 0.000e+00
3.0This time, as expected, it took some more iterations of the program

to arrive in a value inside the admissible interval of error. The program
ran through five iteration, until it reaches a value so next to three that the
error is almost zero.

We may also test the program with a trickier case. Specially we can
try to calculate the root of the number 1 (one), which is equal 1. Using
the same small admissible error as the case above (1e-15), the program
output is:
> run Sqrt 1 1e-15
==================
SQUARE ROOT CALCULATOR
==================
It x Error
0 0.500 1.500e+00
1 1.250 4.500e-01
2 1.025 4.939e-02
3 1.000 6.097e-04
4 1.000 9.292e-08
5 1.000 2.220e-15
6 1.000 0.000e+00

1.0In this case, the program starts using 0.5 as the initial guess for
the square root of 1. It takes 6 iterations to achieve a value inside the
admissible interval. It can be seen that this admissible error is very strict
and in more flexible situations the program could even stop in the 3rd or
4th iteration, where it has already been reached a value very near to the
real analytical root of the desired number.

Extending the Square root Calculator: Generic Root Finder
In this section, the Square root calculator developed above is extended,
so it may find the root of any function. In this first version, two classes
must be defined by the user, which are the function which he wants to
find the root(s) and the analytical derivate of the function. As arguments

Object-Oriented Development and Programming 153

to the program, the user provides the initial guess of the root and the
admissible error.

The class function has no properties and a single method, which is
used to calculate the function at the desired point. To test the developed
code, we use the function to calculate the square root of 9, which we can
analytically obtain (3). The code of this class reads:
class Function {

 double calculate(double x)
 {
 return x*x-9;
 }
}

The class dfunction calculates the analytical derivative of the
function at the desired point. Again, the class has a single method and
no properties. The method calculate is used to find the derivate of the
function defined in the class mentioned above. It is important in this case
that this derivative is the correct expression according to the function
defined above. Otherwise it will not work properly. We use the appropriate
derivative expression of the function defined above.
class DFunction {

 double calculate(double x)
 {
 return 2*x;
 }
}

The class used to generate output to the screen (ScreenOutput) is
changed to show the error as the difference between the previous value
of the root approximation in the iteration with the current value of it. The
code for this class now reads:
class ScreenOutput {

Object-oriented Modelling for Scientific Computing154

 void updateScreen(int i, double xiold, double xinew)
 {
 System.out.print(i);
 System.out.print(“ “);
 System.out.printf(“%.3f”,xinew);
 System.out.print(“ “);
 System.out.printf(“%.3e”,Math.abs(xiold - xinew));
 System.out.println(“ “);
 }

 void printHeader()
 {
 System.out.println(“It x Error”);
 }
}

A class called NewtonRaphson is used to calculate the root
approximation at each iteration step. This class receives as properties the
initial guess of the root, the function to be evaluated and the derivative of
the function. These last two properties are previously defined instances
of the classes Function and DFunction mentioned above. The only
method of this class is to calculate the newton Raphson algorithm at each
iteration step. The code of it reads:
class NewtonRaphson
{
 double xi;
 Function function;
 DFunction dfunction;

 void updateFcn()
 {

Object-Oriented Development and Programming 155

 double f_x = function.calculate(xi);
 double df_x = dfunction.calculate(xi);
 xi = xi - f_x / df_x;
 }

}

The main class is rename to RootFinderv1 (it is the version 1), and
the code inside was modified so as to accommodate the changes made in
the structure of the program. The code of this part is written below:
public class RootFinderv1 {
 public static void main(String[] args) {

 // read in the command-line argument
 double x0 = Double.parseDouble(args[0]);
 double epsilon = Double.parseDouble(args[1]);

 // repeatedly apply Newton update step until desired precision is
achieved
 System.out.println(“==================”);
 System.out.println(“ROOT FINDER CALCULATOR”);
 System.out.println(“==================”);
 ScreenOutput scrout1 = new ScreenOutput();
 Function f1 = new Function();
 DFunction df1 = new DFunction();
 NewtonRaphson algo = new NewtonRaphson();
 algo.xi = x0; // estimate of the square root of c
 algo.function = f1;
 algo.dfunction = df1;
 scrout1.printHeader();
 int i = 0;

Object-oriented Modelling for Scientific Computing156

 double xi = x0*1000;
 scrout1.updateScreen(i, xi, algo.xi);
 while (Math.abs(xi - algo.xi) > epsilon) {
 xi = algo.xi;
 i++;
 algo.updateFcn();
 scrout1.updateScreen(i, xi, algo.xi);
 }
 // print out the estimate of the square root of c
 System.out.println(algo.xi);
 }

}
The next step, as it was done in the previous example, is to test the

developed code. One point to be mentioned first is to respect with the
different roots that a function may have. Suppose a linear function y =
2x+1.The root of this function can be easily checked by rearranging the
equation as follows.

 1
2
−

=
y

x

To obtain the root of such function, it is only necessary to replace y
= 0, in which case we obtain x = -1/2. A plot of this function is shown
below, where it can be seen the point that y=0 (in this point x is the root
of the equation).

Object-Oriented Development and Programming 157

Figure 40: Graph of the function y = 2*x + 1.

From the plot above, it can also be clearly seen that, as the function
infinitely increases to the right-hand side or infinitely decreases to the
left-hand side, this function has a single root. However, consider now the
function used to calculate the square root of number 9. The function is
stated below.

2 9= −y x

Again, it is possible to find the root by directly manipulation of the
above equation, isolating the x on one side of the equation, as it follows:

9= +x y

By assuming y = 0, one can see that two values can be obtained for
x, -3 (3 negative) and +3 (3 positive). A plot in this region of the function
is shown below.

Object-oriented Modelling for Scientific Computing158

Figure 41: Plot of the function y = x2-9

In the present section, it is applied a numerical procedure to calculate
the root(s) of the provided function. The numerical method being
used here is Newton-Raphson. This method is very well known for its
efficiency and for its fast convergence. However, the method can only
find one root at a time. The root that will be found depends mainly on the
initial guess used, which will give the direction of the gradient.

Now we test the RootFinderv1 program to find the root(s) of the
equation used to calculate the square root of 9, mentioned before. The
following results are obtained if an initial condition of 4.5 is used and an
admissible error of 1e-8.
> run RootFinderv1 4.5 1e-8
==================
ROOT FINDER CALCULATOR
==================
It x Error
0 4.500 4.496e+03
1 3.250 1.250e+00
2 3.010 2.404e-01
3 3.000 9.600e-03

Object-Oriented Development and Programming 159

4 3.000 1.536e-05
5 3.000 3.932e-11
3.0

The program took 5 iterations to find the root of the desired function
within the admissible interval. The root that was found was the positive
one (+3), although we know that there is also another root in (-3). To
check that, run the code again using as initial guess (-4.5) and the same
error.
> run RootFinderv1 -4.5 1e-8
==================
ROOT FINDER CALCULATOR
==================
It x Error
0 -4.500 4.496e+03
1 -3.250 1.250e+00
2 -3.010 2.404e-01
3 -3.000 9.600e-03
4 -3.000 1.536e-05
5 -3.000 3.932e-11
-3.0

As expected, the program converged to -3, which is another root of
the function. The algorithm may be used for a function with different
roots, but the root found will depend on how the initial guess directs
the gradient during the iteration process. As a last test, we modify the
equation to a third order polynomial of the form:

3 24 12 24 32= + − −y x x x

From the function above we can obtain the analytical derivative as
follows:

212 24 24= +′ −y x x

The plot below shows the 3 roots of the function:

Object-oriented Modelling for Scientific Computing160

Figure 42: Plot of the function 3 24 12 24 32= + − −y x x x .

Replacing the function and the analytical derivative in the respective
classes of the program, and using as initial guess -5 with admissible error
of 1e-8, the program produces the following output:
> run RootFinderv1 -5 1e-8
==================
ROOT FINDER CALCULATOR
==================
It x Error
0 -5.000 4.995e+03
1 -4.282 7.179e-01
2 -4.033 2.494e-01
3 -4.001 3.211e-02
4 -4.000 5.191e-04
5 -4.000 1.348e-07
6 -4.000 9.770e-15
-4.0

The program arrives the extreme left root of the equation (-4). This
value can be checked by replacing the value in the function, which should
produce the value 0 (zero). As a second tentative, use as initial guess the

Object-Oriented Development and Programming 161

value -2.7 and the same error.
> run RootFinderv1 -2.7 1e-8
==================
ROOT FINDER CALCULATOR
==================
It x Error
0 -2.700 2.697e+03
1 28.776 3.148e+01
2 18.918 9.858e+00
3 12.380 6.538e+00
4 8.072 4.308e+00
5 5.277 2.795e+00
6 3.529 1.747e+00
7 2.537 9.926e-01
8 2.102 4.350e-01
9 2.005 9.695e-02
10 2.000 4.786e-03
11 2.000 1.146e-05
12 2.000 6.570e-11
2.0

An interesting situation happens in this case. Because the derivative
in this point is very low, the algorithm jumps on the 1st iteration from -2.7
and 28.7, and then it starts to converge to the extreme right root of the
equation, jumping the root which is in the middle of these two roots. We
test the program one last time, by using as initial guess -2 and the same
error.
> run RootFinderv1 -2 1e-8
==================
ROOT FINDER CALCULATOR
==================
It x Error

Object-oriented Modelling for Scientific Computing162

0 -2.000 1.998e+03
1 -0.667 1.333e+00
2 -1.009 3.419e-01
3 -1.000 8.547e-03
4 -1.000 1.388e-07
5 -1.000 0.000e+00
-1.0

As expected, the algorithm converged relatively fast to the root in the
middle, taking only 5 iterations to arrive inside the admissible interval.

Extending the Generic Root Finder with Numerical Derivative
In many common applications in scientific computing, one desires to
calculate the root of a function, but it may be so complicated that it is
unfeasible to obtain an analytical one. In this case, a numerical derivative
can simplify the problem, by assuming an approximation as follows:

Which is referred to as Forward Euler approximation. We can
implement this finite derivate in out Root Finder program, in order
to extend it to function which an analytical derivative is not directly
available. First it is necessary to change the DFunction to use the above
equation instead of the analytical one, as it follows:
class DFunction {

 double dx = 0.01;
 Function function;

 double calculate(double x)
 {
 return (function.calculate(x+dx)-function.calculate(x))/dx;

 }

Object-Oriented Development and Programming 163

}

In this case, a property to the DFunction was added, dx, which is the
size of the finite step given to calculate the derivative. Ideally this step
should be very small, so we fix a value of 0.01. Another added property
is the function, so at each time that the derivative is called, it calculates
the finite difference using the function defined in an instance of the class
Function.

Another minor modification is to add during the program an attribution
of the generated instance of the function to the property function of the
DFunction object, according:
df1.function = f1;

Now it is necessary to test this new version, which we call
RootFinderv2. We test with the same third-order equation defined in the
previous case, an initial guess of -2.7 and an admissible error of 1e-8.
The following results are obtained:
> run RootFinderv2 -2.7 1e-8
==================
ROOT FINDER CALCULATOR
==================
It x Error
0 -2.700 2.697e+03
1 24.570 2.727e+01
2 16.128 8.441e+00
3 10.540 5.588e+00
4 6.874 3.666e+00
5 4.519 2.355e+00
6 3.084 1.435e+00
7 2.322 7.622e-01
8 2.043 2.796e-01
9 2.001 4.161e-02
10 2.000 1.079e-03

Object-oriented Modelling for Scientific Computing164

11 2.000 5.953e-06
12 2.000 2.967e-08
13 2.000 1.478e-10
2.00000000000074

Although this initial guess is not a very good one, for the very small
derivative generates a big jump in the root approximation, the algorithm
with finite differences works well, taking 13 iterations to find the root,
while the one with the analytical derivative took 12, just one less.

PYTHON

Introduction
Python is a high -level, object-oriented programming language with
simple to use syntax. Python is a multi-purpose language, it may be
used for Graphical User Interface development, Data Analysis, Web
development, Scientific Computing, etc.

As an interpreted language, when one runs a python program, an
interpreter will parse the code line by line. This is a major drawback
when compared with Java or C++, which are compiled languages. This
feature makes Python slightly slow.

Python is also an extensible language, and a variety of packages are
available with many functionalities already implemented, so the new
developer does not need to start from the scratch when developing a
software.

Comprehensive online guides on how to get started in Python can be
found, among other sites, in the following addresses:
https://www.programiz.com/python-programming
https://www.python.org/about/gettingstarted/
https://wiki.python.org/moin/BeginnersGuide
http://thepythonguru.com/getting-started-with-python/

Obtaining Python
Python is a free software, so it can be directly obtained in the internet. The
official homepage for Python is https://www.python.org/. To a Python

Object-Oriented Development and Programming 165

distribution, navigate to the
Downloads in the top toolbar, and choose the platform (Windows,

Linux, MacOS). A new webpage will be opened and one has only to
choose one of the links according the desired release.

In the present book, we focus on the Python 3. However, there are
many applications using Python 2 also.

A second option to obtain Python is to download an IDE (Integrated
Development Enviroment). This type of software enables the developer
to write and to run the code in the same place, making it easier for
continuum software development. In this regard, WinPython is a portable
free IDE for development in Python on Windows. It is specifically aimed
at educational and scientific purposes. It comes with the following pieces
of softwares:

• IDLEX (Python GUI): IDLE stands for Integrated Development
Environment.It is a simple and suitbale IDE for development
in Python, with features such as multi-window, syntax
highlighting, integrated debugger with stepping, breakpoints,
etc. IdleX is a collection of over twenty extensions and plugins,
developed for additional functionality.

• IPython Qt console: It was developed to be a replacement
for the standard Python shell, or it can be used as a complete
working environment for scientific computing (like Matlab or
Mathematica) when paired with the standard Python scientific
and numerical tools. Among its features, it may be mentioned
dynamic object introspections, numbered input/output
prompts, a macro system, session logging, session restoring,
among others.

• Jupyter Notebook: An open-source web application that
allows the developer to write and share documents that contain
live code, equations, visualizations and explanatory text.
Uses include: data cleaning and transformation, numerical
simulation, statistical modeling, machine learning, etc.

• Spyder: The name of this software stands for Scientific
Python Development Environment. Is an interactive testing,
debugging and developing framework with the possibility of
using scientific computing tools such as numpy, scipy and

Object-oriented Modelling for Scientific Computing166

matplotlib.
• WinPython command prompt: A command prompt with

integrated python environment.
• Winpython powershell prompt:A PowerShell is a more

powerful, feature-rich and more customizable shell than the
WInPython command prompt.

• WinPython Control Panel: It can be used to manage installed
packages, such as numpy or pandas. And it also allows advanced
tasks, such as registering extensions, icons and Windows
explorer context menu to a specific Python distribution.

• Winpython Interpreter: Use to assicate extensions to
WinPython..

• Qt designer: A tool to develop Graphical User Interfaces using
Qt components. The development of the interface can be done
in a what-you-see-is-what-you-get (WYSIWYG) manner, and
test them using different styles and resolutions.

• Qt linguist: A tool to translate Qt C++ and Qt Quick applications
into local languages.

Python primer
To start developing Python code, one can open an empty text file and
start writing it. Another option is to start a Python shell and write the
code, which is computer interactively. While this second approach is
more straight forward for short code and simple calculations, the former
one is much more useful for complex code and more “perennial” code.

The first code presented here is a classic example, the Hello World. It
simple prints in the screen the phrase “Hello World”, or any other phrase
that the developer may want, just by changing the words. To do so, one
has to create an empty text file, naming it as “HelloWorld.py” (note
the extension .py instead or the .txt extension). Once the file is opened,
simply type the following code:
print(“Hello World”)
Save and close the file. There are two ways of running this program. One
is by calling the command prompt, moving it to the folder where the file
HelloWorld.py is saved and typing the following command:

Object-Oriented Development and Programming 167

python HelloWorld.py
If the python is correctly installed and everything works well, the

window should print the phrase “Hello World” and then return so the user
can continue typing.

A second option is to run the code in an IDE, for example using the
IDLEX in WinPython package. One the IDLEX software is started, the
following windows appears in the screen

Figure 43: IDLEX window.

Every code typed in the IDLEX windows will appear after the >>>
symbol. This IDE can also be used as a calculator. For example, the
following calculation can be performed using IDLEX:

Figure 44: IDLEX as a calculator.

Object-oriented Modelling for Scientific Computing168

In the figure above, the Python language was used to calculate the
sum of two numbers in a similar that is done using any calculator.

To run the HelloWorld program using the IDE, navigate to the File >
Open… and find the file “HelloWorld.py”. It opens in a similar way that a
text editor opens, but there are a variety of options in the toolbar, as well
as it is noticeable that the code is syntax highlighted. To run this code
inside IDLEX environment, simply navigate to Run < Run Module. The
result of the program is printed in the IDELX main window.

Syntax basics
Any variable defined in Python store references to objects in the memory.
The names attributed to the variables are called identifiers. In python, the
following set of rules defines how to proceed in order to give a valid
name to a variable:

• The first character of any identifier can be a letter (ex: a or A)
or an underscore (_). The use of a number is not valid.

• Identifiers can be generated by a combination of letters, digits
and underscores.

• Identifiers can be of any length.
• The following expressions are keywords in python, and

therefore can not be used to generate identifiers.

False class finally is return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
pass else import assert break
except in raise

Values are assigned to variables using the “=” in a similar way that is
done in mathematics. For instance, to attribute the value 10 to a identifier
x, simply type x = 10. Python is able to dynamically identify the type of
a variable. This means that it is not necessary to explicit declare x as a int
variable, for the Python can automatically recognize it. In Python each
and everything is an object or an instance of a class.

Object-Oriented Development and Programming 169

Comments are typed starting with a # symbol. Anything written
after such symbol is ignored by the interpreter, and only used for code
documentation and sharing.

One line of code can be used to assign multiple variables. For
example, the following code statement is valid in Python:

Var1, var2, var3 = val1, val2, val3
• Python has 5 basic data types:
• Numbers

o Int: integer values (1, 2, 100)
o Float: for floating point values (1.1, 3.14, 100.0)
o Complex: complex numbers (1+2j)

• Strings: series of characters
• List: a series of numbers
• Tuple: a fixed series of numbers
• Dictionary: store key value pairs
• Boolean: true or false values
Basic mathematical operations can be performed in Python using the

following list of symbols:

Symbol Definition Application Output

+ Addition 3 + 1 4

- Subtraction 3.0 - 0.1 2.9

* Multiplication 3.0 * 0.1 0.3

/ Division 3.0 / 0.1 30.0

// Integer division 1 // 2 0

** Exponentiation 4 ** 0.5 2.0

% Reminder 10 % 3 1

Similar mathematical operations can be performed in strings. For
example, strings index starts at 0 (zero). To access one element of a
string, one can do the following operation:
>>> mystring = “Hello World”
>>> mystring[0]
‘H’
The + operator is used to concatenate strings as follows:
>>> mystring_part1 = “Hello”

Object-oriented Modelling for Scientific Computing170

>>> mystring_part2 = “World”
>>> mystring_part1 + mystring_part2
‘HelloWorld’

The * operator is used to generate a repetition of the string for a
defined amount of times, such as in the following example:
>>> mystring_part1 * 2
‘HelloHello’

If one tries to use the * operator between two strings, then Python
generates an error.

The slicing operator [] can be used to retrieve a single character of
a string, as shown before, as well as to get part of a string using the
following syntax:
Mystring [start : end]
Which will return the part of the string starting in start and ending in end-
1, as in the following example.
>>> mystring_part1[0:3]
‘Hel’
>>> mystring_part1[2:]
‘llo’

Strings can be compared using the following set of operators. The
strings are compared lexicographically, i.e Python compares using ASCII
values of the strings.

Symbol Definition Application Output
< Less than "John" < "Mary" True
> Greater than "John" > "Mary" False
<= Less or equal than "John" <= "Mary" True
>= Greater or equal than "John" >= "Mary" False
== Equal "John" >= "Mary" False
!= Not Equal "John" >= "Mary" True

A List in Python can be defined as a collection of numbers which
somehow are naturally grouped together. For example, all the measures
of mass of different samples may be gathered together in a single list. The

Object-Oriented Development and Programming 171

use of list implements flexibility since one can work with all numbers at
once, or with numbers individually.

A list can be generated by writing the values inside square brackets
and separating the numbers by comma.

mylist = [1, 2, 3.2, 700, 9.3]
The single variable mylist refers to a list of five elements. An

index associates the position of the elements in the list with its value
individually or in a subgroup. Like a string, the first index of a list is 0,
and the following elements are monotonically increasing (0, 1, 2, 3, 4,
5, …).

Alternatively, a list can be composed of strings, as in the following
case:
mylist = [“string 1”, “string 2”, “string 3”]

Or even a mixture of strings, numbers or any other different types,
such as in the following example:
mylist = [“string 1”, 4, [1,2,3]]
There are other ways of creating lists:
mylist = list() # create an empty list
mylist = list([1,2,3]) # create an empty list

Dictionaries are a special type of python data, which associates
values with keywords, enabling quick retrieve, addition, removal or
modification of the keys. While lists are created with square brackets, the
dictionaries are created with curly brackets.

Each item in the dictionary consists of a key, followed by a “:” symbol
and the value associated with it. The pairs are separated by comma.
mydictionary = {
’key1’: 1.12,
’key2’: “thing”

Object-oriented Modelling for Scientific Computing172

}
The exemplified dictionary above has two keys (key1 and key2) with

the attributed values for it (the first one a floating number and the second
a string). Optionally an empty dictionary can be created by using the
curly brackets without any argument inside it.

My_empty_dictionary = {}
The value associated with a key can be retrieved by using key inside

square brackets. The following code exemplifies this method.
>>> mydictionary = {
 ‘key1’: 1.1,
 ‘key2’: “any text here”
 }
>>> mydictionary[‘key2’]
‘any text here’

Items can be deleted from a dictionary using the del keyword. In the
previously created dictionary, writing “del mydictionary[‘key1’]”.

Tuple is a special type of Python list, in which the values inside it can
not be modified, deleted or added, replaced or reordered. This means that
Tuples are immutable.

A Tuple can be created by inserting values inside a parenthesis ().
An empty tuple can be generated by opening and closing the parenthesis
without any value inside it.
>>> mytuple = () # empty tuple
>>> mytuple = (1 ,2 3) # tuple with three arguments

Some common operations that are performed in lists can also be
performed in tuples, such as obtaining the maximum value (max()), the
minimum value (min()), indexing using slicing operator among others.

Loops

While loop
The while loop is used to repeat a set of statements as long as a condition
is true (Langtangen, 2009). In Python, this type of programming block is

Object-Oriented Development and Programming 173

implemented using the keyword while and indenting the code inside the
block, as in the following example:
T = 20
dT = -5
while T > 0:
here the block performs some mathematical operations
T = T + dT # the value of T is updated at each time the
loop runs

An important feature in Python language is code indentation. Any
code inside a block must be with the same indentation, otherwise the
program does not run, or it does not perform what it is expected for. The
first statement coinciding with the indentation of the while loop runs only
after the loop has completely executed.

For loop
For loops are programming structures similar to the while loop, in the
sense that a block of code is repeated until a certain condition is met. But
for loops are easier to be used when walking through each element in a
list to run the same block of code. For example, suppose it is necessary to
print in the screen all the elements of a list of voltage data. The following
code can be used:
voltage = [1.0, 2.0, 7.0, 12.0]
for V in voltage:
print(‘The voltage of the element is:’,V,’V’)
print(‘------------------’)

The for V in voltage construct generates a loop over each element
in the voltage list. At each time the loop restarts, the variable V refers
to an element in the list, starting with voltage[0], voltage[1] and so on.
The loop repeats until it the reaches the last element (voltage[n-1] with n
being the number of elements in the list).

Branching
Branching or flow control statements are programming structures used
to dictate if a block of code should run or not, according one or more

Object-oriented Modelling for Scientific Computing174

conditions that should be met. In many programming languages, as well
as in Python, a grammatically similar to human language structure is
used, the if.. else block.

If… else blocks are used to test if a condition is true, and in positive
case it runs the block of code inside the if part. The else block is used in
case the tested conditions is false. For example, consider the following
code:
voltage = 220.0
if voltage < 220.0:
print(‘voltage is low’)
else:
print(‘voltage is not low’)

The code above prints the statement “the voltage is low” if the variable
voltage carries a value which is less than 220. On the other side, in case
the voltage is anything other than less than 220, it prints the statement
“the voltage is not low”. Maybe it is high, or maybe it is exactly equal
220. The only thing that the condition block above tests is IF the voltage
is less than 220, anything different from that is thrown to the else code
block. In summary:
if <condition>:
 # block of statements if condition is TRUE
else:
 # block of statements if condition is FALSE

Additionally, more conditions can be tested. Suppose in the voltage
example above, that we need to test not only if the voltage is less than
220, but also if it is exactly equal to 220. The if else block can be extended
with the elif keyword, which means else if, as in the example below.
voltage = 220.0
if voltage < 220.0:
 print(‘voltage is low’)
elif voltage == 220.0:
 print(‘voltage is exactly equal to 220’)

Object-Oriented Development and Programming 175

else:
 print(‘voltage is not low’)

Optionally the else block can be skipped. In this case, if no condition
is met, then the program jumps to the code after the if else block. If the
if else block is very simple, it can be written in a condensed form using a
single line, as in the following case:
<code to run> if <condition> else # <code to run>

File handling
File handling refers to the technique of operating over files, opening,
reading and/ or writing and closing afterwards. The syntax for opening
a file is:
fileidentifier = open(filename, mode)
the fileidentifier is a file handler or file pointer generated using open with
filename (a string with the path of the file) and the mode used to open the
file. After operations on a file, it is important to close the file. The syntax
for doing so is:
fileidentifier.close() # fileidentifier is the file pointer

The different modes that a file can be opened are summarized in the
following table.

Mode Syntax Description

Read-only “r” Open a file for read only

Write-only “w” Open a file for writing. All the data
in the file is cleared after the file is
opened. If the file does not exist,
then it is created.

Append “a” Write data at the end of the file.

Binay Write “wb” Open a file to write in binary mode.

Binary Read “rb” Open a file to read in binary mode,

Functions
A function in computer programming can be defined as a set tasks
performed according some inputs, and generating some output. In Python,
functions are defined using the keyword def. The keyword return is used

Object-oriented Modelling for Scientific Computing176

to express which value(s) is(are) returned as output after the code runs.
For example, suppose the following equation

Which is the equation used to calculate the space where an object
moving uniformly accelerated is located. A function can be defined
where the user provides the initial position (0s), the initial velocity (0v),
the constant acceleration (a) and it gets as result the actual position (s)
as well as the actual velocity (= +ov v at), defined as:

= +ov v at

In Python a function to obtain this values can be written as:
def func_s(s0,v0,a,t):
 i = 1
 v = list([v0])
 s = list([s0])
 while i<t+1:
 v.append(v0 + a*i)
 s.append(s0 + v0*t + (a*i**2)/2)
 i += 1
 return s,v

The first line defines the name of the function (func_s) followed by
the arguments that the function receives as inputs: the initial position
(s0), the initial velocity (v0), the constant acceleration and the time of
simulation.

The second line initializes the variable which will be used to iterate
and calculate the position and the velocity at each time step. Following
the list of velocities (v) and position (s) is also initialized with the initial
position and velocities.

The while loop is used to obtain the value of position and velocity at
each time step. The last line of the function with the keyword return says
which variables will be returned by the function, which are the lists of
velocities and positions (s and v).

Object-Oriented Development and Programming 177

To use the function is necessary to give the necessary inputs and
to use the outputs somehow. A complete program which calculated the
positions and velocities and print them in the screen is given below.
print(‘-------------’)
print(‘Movement Calculator’)
print(‘-------------’)
def func_s(s0,v0,a,t):
 i = 1
 v = list([v0])
 s = list([s0])
 while i<t+1:
 v.append(v0 + a*i)
 s.append(s0 + v0*t + (a*i**2)/2)
 i += 1
 return s,v
s0 = 0.0
v0 = 0.0
a = 2
t = 10
s,v = func_s(s0,v0,a,t)
print(‘Position: ‘,s)
print(‘Velocity: ‘,v)

Once this code (named as calculatespace.py) runs, the following
output is obtained:
calculatespace.py

Movement Calculator

Position: [0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0]
Velocity: [0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0]

The function used to calculate the position and velocity are useful

Object-oriented Modelling for Scientific Computing178

for reuse, in the sense that different parameters (input arguments) can
be given to the function to analyses different outputs obtained through
it. The following code exemplifies the evaluation of this code for two
different accelerations.
print(‘-------------’)
print(‘Movement Calculator’)
print(‘-------------’)
def func_s(s0,v0,a,t):
 i = 1
 v = list([v0])
 s = list([s0])
 while i<t+1:
 v.append(v0 + a*i)
 s.append(s0 + v0*t + (a*i**2)/2)
 i += 1
 return s,v

s0 = 0.0
v0 = 0.0
a = [2.0, 1.0]
t = 10.0

s,v = func_s(s0,v0,a[0],t)
print(‘Acceleration: ‘,a[0])
print(‘Position: ‘,s)
print(‘Velocity: ‘,v)
s,v = func_s(s0,v0,a[1],t)
print(‘Acceleration: ‘,a[1])
print(‘Position: ‘,s)
print(‘Velocity: ‘,v)

Note that, by transforming the acceleration variable, from a single

Object-Oriented Development and Programming 179

value to a list of values (2 and 1) it was only necessary to add one line of
code to test the function with the new conditions (s,v = func_s(s0,v0,a[1],t))
and the following three lines are screen output. When this code is run,
one obtains the following output:
calculatespace.py

Movement Calculator

Acceleration: 2.0
Position: [0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0]
Velocity: [0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0]
Acceleration: 1.0
Position: [0.0, 0.5, 2.0, 4.5, 8.0, 12.5, 18.0, 24.5, 32.0, 40.5, 50.0]
Velocity: [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]

This type of problem exemplifies the flexibility and extensibility
of the functions in Python, especially for cases where it is reused with
difference input arguments.

A convention in Python is to develop documentation for user-defined
function. This is done by adding comments to the begging of functions
after its definition. The documentation string, known as a doc string,
should contain a short description of the purpose of the function and
explain what the different arguments and return values are. Interactive
sessions from a Python shell are also common to illustrate how the code
is used. Doc strings are usually enclosed in triple double quotes “””,
which allow the string to span several lines (Langtangen, 2011).
def func_s(s0,v0,a,t):
 “””
 Function calculates space and position
 Of an object in uniform accelerated motion
 s0 - Initial position
 v0 - Initial velocity
 a - constant acceleration
 t - time span

Object-oriented Modelling for Scientific Computing180

 return:
 s - velocity vector
 v - velocity vector
 “””
 i = 1
 v = list([v0])
 s = list([s0])
 while i<t+1:
 v.append(v0 + a*i)
 s.append(s0 + v0*t + (a*i**2)/2)
 i += 1
 return s,v

Classes and objects
As already mentioned in the previous chapter, a class packs a set of data
with a collection of methods or function which operates in this data.
In this way, data and methods are grouped to achieve more modularity
and because of that, a better organization in complex and continuously
growing projects.

In many cases, the use of classes is not mandatory. However,
the implementation of such a technique allows more elegant code
development and the fact that the code becomes modular makes it easier
to grow at a later stage.

In scientific computing, the most common application of classes is
to represent function, incorporating its parameters as part of the class
members and the equation itself as one or more methods inside the class.
To exemplify one may consider the equation of uniformly accelerated
motion used in the previous section. In this case, the initial position and
velocity as well as the acceleration may be considered parameters of the
class.

In Python, a class usually has a constructor, which is a special
function that runs when an instance of the object is created. The syntax
of a constructor is given in the following form:

Object-Oriented Development and Programming 181

__init__
The class for the uniformly accelerated motion can be represented

using UML notation, as shown below:

Figure 45: A Class for the uniformly accelerated motion.

In the above representation, we chose to call the developed class as
UniformObject, for it represents a generic object that behaves according
the uniform motion equation described above. This class has as attributes
its position (which will be the initial position when the equation is
calculated), its current velocity (which will be the initial velocity when
the equation is calculated). The __init__ method is the constructor
method, and the value method is used to obtain the new position of the
instance once the equation is evaluated.

The following code shows an initial implementation of the class
Uniform Object in Python:
class UniformObject:
 def __init__(self,s0,v0,a):
 self.position = s0
 self.velocity = v0
 self.acceleration = a
 def value(self,t):
 newposition = s e l f . p o s i t i o n + s e l f . v e l o c i t y * t + s e l f .
acceleration*t**2/2
 newvelocity = self.velocity*t+self.acceleration*t
 return newposition, newvelocity
 def formula(self):

Object-oriented Modelling for Scientific Computing182

 print(‘s0 + v0*t + a*t**2/2’)
As already mentioned, the __init__ function is runs when the user/

developer tries to create an instance of the UniformObject class. It
attributes the data to the class members accordingly. The value () method
is used to calculate the evolution of space and velocity of the object under
the designated law of motion. This function takes as argument the time
t of simulation in order to obtain the new position and velocity of the
object. At least the formula () method just prints the formula used in the
class. Changing the formula in this last method will not change how the
motion is calculated, and it is just used as an informative piece of data.

The following code exemplifies the application of the UniformObject
class to calculate the positions and velocities of an object under the law
of motion with different times of simulation.
s0 = 0
v0 = 0
a = 2
uobject = UniformObject(0,0,2)
print(“object started at position “, uobject.position, “m, velocity “,
 uobject.velocity,”m/s and acceleration “, uobject.acceleration, “m2/s.”)
t = 10
s,v = uobject.value(t)
print(“at time “, t, “s, object position is”, s,”m, velocity “,
 v,”m/s and acceleration “, uobject.acceleration, “m2/s.”)
uobject.formula()
t = 20
s,v = uobject.value(t)
print(“at time “, t, “s, object position is”, s,”m, velocity “,
 v,”m/s and acceleration “, uobject.acceleration, “m2/s.”)
uobject.formula()

The code mentioned above generates the following output:
unformobject.py
object started at position 0 m, velocity 0 m/s and acceleration 2 m2/s.

Object-Oriented Development and Programming 183

at time 10 s, object position is 100.0 m, velocity 20 m/s and acceleration
2 m2/s.
s0 + v0*t + a*t**2/2
at time 20 s, object position is 400.0 m, velocity 40 m/s and acceleration
2 m2/s.
s0 + v0*t + a*t**2/2

The correctness of the algorithm can be tested by manual calculation
or using a spreadsheet.

Now we would like to have a more generalized object, which does
not only perform uniformly accelerated movement, but actually any type
of motion (accelerated, deaccelerated, constant velocity). To do this, it is
necessary to remember the following concepts of motion:

2

2 = =
d s dv

a
dt dt

 = ds
v

dt

Where a is the acceleration (m²/s) , s is the velocity (m/s) and s is
the position (m). We may apply Backward Euler time integration to solve
this equation and find the velocity, the acceleration and the position at
each instant of time. The Backward Euler algorithm reads:

(),=
dy

f y t
dt

Replacing the Backward Euler algorithm in the laws of motion, one
obtains:

Object-oriented Modelling for Scientific Computing184

So at each time step of simulation the new value of position and
velocity can be obtained with the instaneous acceleration is defined. The
accuracy of the algorithm depends on the time step (Dt) used. The object-
oriented approach will help to evaluate the accuracy of different time
steps. The problem is defined by assuming a relation of acceleration with
time and assuming the initial conditions:

()0 0= =s t

() ()0 0 0= = = =
ds

t v t
dt

The following figure illustrates the relation acceleration x time:

Assuming a constant acceleration different from zero, the motion
is said to be uniformly accelerated. In this case the analytical solution
is well known and was already shown above. A class was developed
incorporating the derivative equations of motion. The code is shown
below.
import numpy as np
class MovingObject:

Object-Oriented Development and Programming 185

 def __init__(self, s0, v0, t, a):
 self.position = [s0]
 self.velocity = [v0]
 self.velocitytime = []
 self.accelerationtime = t
 self.acceleration = a

 def dds(self, t, x):
 return np.interp(t, self.accelerationtime, self.acceleration)

 def ds(self, t, x):
 return np.interp(t, self.velocitytime, self.velocity)

 def get_initvelocity(self):
 return self.velocity[0]

 def get_initposition(self):
 return self.position[0]

First, it is necessary to import a package very useful for numerical
computing, the numpy. This package contains a variety of useful methods
to be used in scientific computing. In the present case, it is used the
interpolation method from numpy.

The class Moving Object has four class members: the position
vector, the velocity vector, a vector of the time that the velocity data is
recorded, a vector of the time that the acceleration data is recorded and
the acceleration vector.

The class defines four methods. The first method (dds) as the name
suggests, calculates the second derivative of the position, which is the
acceleration value. This value is obtained by interpolating the table of
time x acceleration stored in the instance of the class. Here the package
numpy is used to perform that calculation.

Object-oriented Modelling for Scientific Computing186

The second method (ds) is used to calculate the first derivative of
the position, which is the value of the velocity at each time step. An
important feature to be clarified is that the first derivative in this case can
only be calculated once the second derivative is considered. Again, the
value of the velocity is obtained by interpolating in the table of time x
velocity stored in the instance of the class.

The third method is used to retrieve the initial condition on the
velocity. Although this method is optional, it keeps the program more
clear and elegant. The same principle applies to the last method, which is
used to get the initial position of the instance of the class.

To integrate the derivative equations, as already mentioned, we
implement Backward Euler algorithm. In an object-oriented approach, a
class can be implemented to perform this calculation. The following code
refers to the developed class.
class BackwardEuler:
 def __init__(self, f, t0, N, dt):
 self.f = f
 self.t0 = t0
 self.N = N
 self.dt = dt
 self.x = []
 self.t = []
 def integrate(self, x0):
 x = x0
 t = t0
 self.record(x0, t0)
 while t < N*dt:
 t = t + dt
 dx = self.f(t, x)
 x = x + dt * dx
 self.record(x, t)
 def record(self, x, t):

Object-Oriented Development and Programming 187

 self.x.append(x)
 self.t.append(t)

The class Backward Euler has six class members. The first member
(f) refers to the derivative function to be integrated. Namely:

(),=
dy

f t y
dt

The second member stored the initial time used to perform the
integration. This time must be the same as the time that the initial
conditions of velocity and position were obtained. The third member (N)
is the number of steps of integration. The fourth member defines the time
step of integration, or the difference in time between two subsequent
steps.

The fifth and sixth members store the calculate state and time after
the solver calculates it. This data can be retrieved to be analyzed, plotted
and saved.

Two methods, besides the constructor (__init__) are implemented
in the Backward Euler class. The first method, integrate is the core of the
solver and it performs the time integration according the algorithm. At
each iteration of the while loop, the new state is calculated and stored in
the instance of the class by calling the record () method.

In order to be able to test the accuracy of the method and of different
time steps, a simple function is implemented to calculate the analytical
values of position and velocity at each time. The code of the function is
the following:
def func_s(s0, v0, t0, a, N, dt):
 s = [s0]
 v = [s0]
 t = [t0]
 while t[-1] < N * dt:
 t.append(t[-1] + dt)
 s.append(s0 + v0 * t[-1] + a * t[-1] ** 2 / 2)
 v.append(v0 + a * t[-1])
 return s, v, t

Object-oriented Modelling for Scientific Computing188

After the classes and the previous function are defined, the following
program can be written to calculate the position of an object using the
integration algorithm and comparing two different time steps: 1 second
and 0.5 seconds.
import matplotlib.pyplot as plt

s0 = 0.0
v0 = 0.0
a = [2.0, 2.0]
t = [0.0, 20.0]
uobject = MovingObject(s0, v0, t, a)

t0 = 0.0
N = 20.0
dt = 1.0
analy_s, analy_v, analy_t = func_s(s0, v0, t0, a[0], N, dt)

solver1 = BackwardEuler(uobject.dds, t0, N, dt)
solver1.integrate(uobject.get_initvelocity())
uobject.velocity = solver1.x
uobject.velocitytime = solver1.t

solver2 = BackwardEuler(uobject.ds, t0, N, dt)
solver2.integrate(uobject.get_initposition())

s0 = 0.0
v0 = 0.0
a = [2.0, 2.0]
t = [0.0, 20.0]
uobject = MovingObject(s0, v0, t, a)

Object-Oriented Development and Programming 189

t0 = 0.0
N = 40.0
dt = 0.5
solver3 = BackwardEuler(uobject.dds, t0, N, dt)
solver3.integrate(uobject.get_initvelocity())
uobject.velocity = solver1.x
uobject.velocitytime = solver1.t

solver4 = BackwardEuler(uobject.ds, t0, N, dt)
solver4.integrate(uobject.get_initposition())

handles = plt.plot(t, a, ‘r--’)

plt.xlabel(‘time (s)’)
plt.ylabel(‘Acceleration (m²/s)’)
plt.grid(True)
plt.savefig(“Acceleration.png”)
plt.show()

handles = plt.plot(analy_t, analy_s, ‘r--’, solver2.t, solver2.x , ‘g^’,
solver4.t, solver4.x , ‘b^’)

plt.xlabel(‘time (s)’)
plt.ylabel(‘Position (m)’)
plt.legend(handles, [‘Analytical’,’dt = 1’,’dt = 0.5’])
plt.grid(True)
plt.savefig(“PositionBEdt1.png”)
plt.show()

In the first line of the code, the package matplotlib is imported to be
used to generate graphical output of the results. Documentation of this
package can be found in the web address: https://matplotlib.org/.

Object-oriented Modelling for Scientific Computing190

The following figure illustrates the graphical output of the program
above, where it is compared the results of the position using the analytical
solution, a backward euler algorithm with time step of 1 second, and the
backward euler algorithm with 0.5 second.

As expected, the use of a smaller time step generates better results
(with less error in comparison with the analytical solution) than the bigger
time steps. To show the capability of generalization of the algorithm, it can
be used to calculate the position of the moving object using any function
of the acceleration with time. Let’s assume the following acceleration x
time profile.

Object-Oriented Development and Programming 191

In the acceleration profile above, it can be seen that the object has
an increasing acceleration in the time interval of 0 to 5 seconds. Then
it starts to deaccelerate until it reaches an acceleration of -7 m²/s, which
means that the object reduces significative its velocity, possibly even
reaching negative velocity (the object goes backward). From 10 seconds
up to 20 seconds it accelerates again, until it reaches the acceleration of
4m²/s. In Python, the acceleration and time lists were defined as:
a = [2.0, 4.0, -7.0, -1.0, 4.0]
t = [0.0, 5.0, 10.0, 15.0, 20.0]

By using the same program that was developed before (just changing
the acceleration and time lists as defined above), the obtained result for
the position and for the velocity are shown below:

Object-oriented Modelling for Scientific Computing192

As it was already expected by looking in the acceleration profile, the
object does not only move forward, but approximately at 10 seconds, an
inflection in the position and the negative values of the velocity profile
shows that the object moves backward, and it continues to do so until the
end of its movement.

The above example shows a simple but elegant and useful
implementation of object-oriented programming in Python to solve
scientific computing problems. In the following section we go a bit
further in this subject.

Class Hierarcy – Extending a class
On this section, it is show how Python can be used to generate classes
derived from more generic ones, and how this functionality can spare
time and make complex programs simpler to be written

To start with an example, consider the following class for first order
polynomials, or straight lines, according the following equation template:

0 1= +y c c x

Where 1 c and 1 c are parameters of the equation, i.e class data
members, and x is an independent variable. Naturally, y is the dependent
variable. The class developed in Python for this type of polynomial could
be written as follows:

Object-Oriented Development and Programming 193

import numpy as np
class Line:
 def __init__(self, c0, c1):
 self.c0 = c0
 self.c1 = c1

 def __call__(self, x):
 y = self.c0 + self.c1*x
 return y

The class defines two methods. The first one (__init__) is the
constructor method and initializes the values of the parameters of the
line. The second method (__call__) calculates the value of dependent
variable given a dependent variable value.

One important thing to mention at this point is the special method
__call__. This method is used to refer to the object in a special way.
By implementing it, an object instance can perform a task using the
following syntax:
Myobject()
As an example, the usage of the line class can be done as follows:
c0 = 1
c1 = 2
myline = Line(c0, c1)

x = 1
y = myline(x)
print(“x = “,x,” y = “, y)

Suppose now that it is desired to extend the functionality of the Line
class, by making it able to calculate a parabola function (a second order
polynomial). In this case there are basically three possibilities:

• To write a whole new function from scratch: For a simple case
such as the present one, this solution may not be the worst and it
is relatively easy. Nonetheless, the repetition of the same code

Object-oriented Modelling for Scientific Computing194

that was already written in the Line class is not recommended
and should be avoided.

• To rewrite the Line class: This is also a simple and easy task
to implement. However, the code that may have already been
written using the Line class may have to be rewritten in order
to work with the new version of the class, and this can be a
very hard task. So, this procedure should also be avoided.

• To write a new class that incorporates the features already
implemented in the Line class and brings the necessary new
features to perform the desired calculations. This type of
programming is referred to as inheritance, and is the best
procedure to be followed in problems such as these.

In Python, the nomenclature used to derive a child class from a parent
class follows the specification below:
class ChildClass (ParentClass)

So, in this specific case of the child Parabola class, the definition of it
will be written as follows:

class Parabola (Line)
Which means that the new class, Parabola, is a child class from Line

and it inherits its class members and functions, invisibly. Naturally, the
class Parabola will not be an exact copy of the Line class, but it should
extend the constructor by incorporating extra class members, and the __
call__ method is also changed by using the parabola equation as follows:

2
0 1 2 = + +y c c x c x

In the equation, it is clear that the class members 0c and 1c are

inherited from the Line class, while the parameter 2c will be added to
this new class. In order to avoid repeating the same code of the parent
class, the following syntax should be used to call the methods of the
parent class:

ParentClass.methodname(self, arg1, arg2, …)
The following code shows how the Parabola class is defined, and the

repetition of already implemented code in the Parent class is avoided by
using the syntax shown above.

Object-Oriented Development and Programming 195

class Parabola(Line):
 def __init__(self, c0, c1, c2):
 Line.__init__(self, c0, c1)
 self.c2 = c2

 def __call__(self, x):
 return Line.__call__(self, x) + self.c2*x**2

In the constructor method, the constructor of the parent class is called
so as to handle the two class data members that are equal on the Line class
and the Parabola class. In this way, rewritten the same code is avoided.
The same principle is applied in the __call__ method, where the same
function is called from the parent class and it is added the additional
value so as to obtain the results of a parabola equation, and not a line.

Another approach to solve the same problem would be, instead of
extending the functionality of a Line, to restrict the Parabola. If we think
of a Line in the point of view of a Parabola equation, the line equation
can be written as:

2
0 1 0= + +y c c x x

So, it can be said that a line is a parabola with the parameter 2c set to 0 (zero). In
this sense, the Parabola class would be written as:

class Parabola:
 def __init__(self, c0, c1, c2):
 self.c0 = c0
 self.c1 = c1
 self.c2 = c2

 def __call__(self, x):
 y = self.c0 + self.c1*x + self.c2*x**2
 return y

And the Line class would be a child class from the Parabola, according
the following code:
class Line(Parabola):

Object-oriented Modelling for Scientific Computing196

 def __init__(self, c0, c1):
 Parabola.__init__(self, c0, c1, 0)

Here, only the construction need to be overridden, since it is explicitly
defined that the last parameter of the Parabola must be set to 0 (zero). The
__call__ is just the same, so there is no need to rewrite it.

The concept of the approach to be used (from Line to Parabola or
from Parabola to Line) can be extended to any problem in general, using
a perspective of inheriting class from a simpler to a more complex one,
or vice versa. In general, it is natural to think that new classes will inherit
from simpler, more generic class. However, not necessarily the generic
classes will be simpler, and the way that a problem will be solved depends
on how the problem is seen by the developer. There is no right or wrong.

Application in Scientific Computing
Bahn et al. (2002) developed an object-oriented scripting interface to a
mature density functional theory code. The advantage of using an object-
oriented approach is highlighted by the authors, in the sense that there
was no need to rewrite the underlying number-crunching code. The paper
shows in detail the advantages and disadvantages of the homogeneous
interface.

Adams et al. (2002) developed a software package called PHENIX,
meaning Python -based Hierarchical ENvironment for Integrated
Xtallography. The software is used for crystallographic macromolecular
structure determination. According the authors, the developed software
will be able to provide algorithms to proceed from reduced intensity
data to a refined molecular model and making easier to define structure
solution for both the novice and expert crystallographer.

In 2007, Pierce created the PsychoPy, a platform-independent
experimental control system written in the Python interpreted language
using entirely free libraries. The author mentions that the motivation
to develop such software is the fact that computer display technology
is a major contributor to the studies in visual processing. The software
package provides tools that allows a variety of different exercises, from
stimulus presentation and response collection from a big range of devices,
to simple data analysis such as psychometric function fitting.

Object-Oriented Development and Programming 197

In the field of Bioinformatics, Sukumaran & Holder (2010)
contributed by creating a Python library for phylogenetic computing,
called DendroPy. The software provides object-oriented reading, writing,
simulation and manipulation of phylogenetic data, with an emphasis
on phylogenetic tree operations. Special features are used in order to
perform efficient calculation of tree distances, similarities and shape
under various metrics. The framework supports a variety of phylogenetic
data formats (NEXUS, Newick, PHYLIP, FASTA, NeXML, etc.).

One work already mentioned in the UML chapter, Perez et al. (2012)
developed pyOpt, a Python framework focused on non-linear constrained
optimization. A distinction is maintained between the problem and
the solver, which provides high flexibility to the framework. Different
optimization algorithms are implemented in pyOpt and are accessible in
the common interface. The authors demonstrate the applicability of the
developed framework by solving a variety of problems with different
levels of complexity.

The object-oriented programming has been shown useful for
macromolecular simulation and design through the implementation of
Rosetta3 by Leaver-Fay et al. (2014). Rosetta3 is a molecular modeling
program, freely available for academic use. Its architecture enables the
rapid prototyping of novel protocols by providing easy to use interfaces
to powerful tools for molecular modeling.

MODELICA
Modelica is a programming language focused on the development and
simulation of mathematical models of complex nature or man-made
systems. It is an object-oriented and equation based programming
language. According Fritszon (2003), the four main characteristics of
Modelica are:

The flow of data is acausal, since the language is equation-based
instead of statement based. This feature enables the reuse of classes and
more adaptability of one model for different contexts.

Its features englobes physical objects from a diversity of domains:
electrical, mechanical, chemical, biological and mathematical application
are only some of the domains which can be studied using Modelica.

Object-oriented Modelling for Scientific Computing198

The language possesses a generic unified class component
It is strongly based on component modelling, with constructs for

creating and connecting components, making the development of
complex systems easier than other programming languages.

The history of its development started in 1996 with the PhD thesis of
Hilding Elmqvist. He and a group of programmers started to work together
in the area of object-oriented modelling technology and applications. The
initial goal was to write a paper on the existing technologies on object-
oriented programming, including an investigation on the possibility of
unifying existing modeling languages, as part of the ESPRIT project
Simulation in Europe Basic Research Working Group (SiE – WG).

In a short period of time after the work has started, the focus of those
involved in the project shifted from simple providing a revision on the
state-of-the-art, to start to develop a novel unified modeling language
based on the whole experience of tool designers, application experts and
computer scientists. The design started from scratch, and a new name
was given to the language: Modelica.

The group founded the Technical Committee 1 inside EuroSim. Not
much later, in February 2000, the Modelica Association was estabilished
as a non-profit organization with international projection and focused
on promoting and maintain the development and propagation of the
Modelica Language and Modelica Standard Libraries.

Obtaining a Modelica IDE
In order to use Modelica features, one needs to obtain a software for
developing and simulating, which is able to read the Modelica code. The
following list is a compilation of some commercial and free Modelica
IDEs (Integrated Development Environment) available:

Table 2 – List of comercial IDEs for Modelica.

Software Provider Type Description

Simplorer ANSYS Commercial multi-disciplinary system
modeling and simulation
solution.

Object-Oriented Development and Programming 199

Dymola Dassault Systèmes Commercial Modelica translator
which is able to perform
all necessary symbolic
transformations for large
systems.

SimulationX ESI ITI GmbH Commercial Software with graphi-
cally-interactive features
for modeling, simulation
and analysis of multi-
-domain systems from 1D
to 3D.

MapleSim Maplesoft Commercial high-performance multi-
-domain modeling and
simulation tool.

Wolfram
System
Modeler

Wolfram Commercial high-fidelity modeling
environment that uses
versatile symbolic compo-
nents and computation to
drive design efficiency
and innovation

Table 3 – List of free IDEs for Modelica.

Software Provider Type Description

JModelica.org --- Free extensible Modelica-based open
source platform for optimization,
simulation and analysis of com-
plex dynamic systems.

Modeliac ---- Free compiler for a subset of the Mo-
delica language including parts
of the "equation" subset that can
express relations between Real
variables.

OpenModelica ---- Free complete Modelica modeling,
compilation and simulation envi-
ronment based on free software.

Basic concepts of Modelica
Every system developed in Modelica is based on classes, also referred
to as models. Once a class is defined, it is possible to any number of
instances of the class, the objects. The classes define the blueprints of

Object-oriented Modelling for Scientific Computing200

the objects, which are to be “produced” through Modelica compiler and
run-time system.

The Class is divided into components. The most relevant of them
are the variable declarations and the equations sections. To illustrate,
the following model is used to generate our first system, which behaves
according the Linear ODE:

(), 0 1.0= + =
dx

ax b x
dt

The variable x is also called a state of the system. The time derivative

(
dx

dt) is represented in Modelica through the method der(). The above
system can be written in Modelica according the following code:
class LTISystem
 Real x(start = 1);
 parameter Real a = 3;
 parameter Real b = 1;
 equation
 der(x) = a*x+b;
end LTISystem;

In OpenModelica, this model can be generated by going to File >
New Modelica class and typing the above code. After this, one can go to
Simulation > Simulation Setup and configure the start time and stop time,
the solver and other options of the simulation. To exemplify, the above
model was simulated from 0 to 2 using euler solver. The result is shown
below:

Object-Oriented Development and Programming 201

Figure 46: Result for the simulation of the simple LTISystem model.

The simulation can also be performed by opening the Command
Prompt Compiler and writing the following directive:
simulate(LTISystem,stopTime = 2)

Looking again the definitions of the model LTISystem, it can be
subdivided into two main parts: the first part declares the variables
and parameters of the system. The keyword Parameter defines which
variables are parameters, and omitting this word creates variables which
are not view as parameters by the model. For instance, the variable x is
not set as a Parameter. A initial value can be given to variables though
it is optional. Not setting the initial value sets the variable to 0 at the
beginning of the simulation.

The second block in the LTISystem model consists of the equations
or the definitions on how the system behaves. As already mentioned, the
declaration of derivatives of variables is done using the der() expression.

Comments can be given in the model to clarify the meaning of
each block or line of code. They also make the job easier of a third
party upgrading or working in the model, since descriptive text gives
explanation of what means the components of the program.

A comment can be written inside double quotes (“ a comment “).
Usually this type of comment is used in the same line as the model
definition and variable declaration, documenting the program. They are
reffered to as definition comments, for they are not completely ignored by

Object-oriented Modelling for Scientific Computing202

Modelica. In fact, these comments are used by Modelica programming
environment to appear in menus or help texts for the user.

Another way of inserting comments is by using double slashes (/ /),
and every text appearing after this symbol in a line is completely ignored
by the compiler and serves only as documentation for the programmer.
A third mode, which allows comments to span over many lines is by
starting it with /* and ending it with */.

The last way of commenting is using the block Annotation. This block
helps to create structured documentation for the model. It also provides
graphical features for the model, i.e, Modelica is able to generate a
representation of the model according definitions using the annotation.
For example, the following code:
annotation(
 Diagram(graphics =
 {Polygon(origin = {-2, 4}, points = {{-44, 36}, {44, 36}, {44, -36}, {-44, -36},
{-44, 36}}),
 Text(origin = {-10, 31}, extent = {{20, -50}, {-2, 3}}, textString =
“LTI System”, fontSize = 50)}, coordinateSystem(initialScale = 0.1)));

Generates a graphical output of a rectangle representing the system
with the text LTI System as the figure below.

Figure 47: Graphical representation of the LTI System using annotation.

Modelica object-oriented approach
In common object-oriented softwares, such as Java, Phyton, C++ and
many others, object-oriented programming supports operations on stored
data, which can be variables or objects. On the other side, Modelica
emphasizes structured mathematical modeling. In this sense, a class is a
collection of mathematical descriptions of the model, simplifying further
analysis. This is called declarative programming.

Object-Oriented Development and Programming 203

In essence, the way that object-oriented programming is seen in
Modelica can be summarized as (Fritszon, 2003):

• The concepts of the model are structured using object-
orientation, which emphasizes the declarative structure of the
mathematical equations. The three main concepts that gives
foundation to this structure is the development of hierarchies,
component-connections and inheritance.

• The dynamical properties of the model are expressed in a
declarative way using equations

• The object then consists into an instance containing a set of
shared data.

The structure provided by Modelica to develop declarative statements
avoid the necessity of the user to be rewriting the way information or
data flows in the model and how to simulate it. Al these steps are taken
care by the Modelica compiler.

Acausal Physical Modeling
Acausal physical modeling is a very unique and special feature of
Modelica. To better explain it, consider a linear equation of two variables,
x and y, as stated below:

2* 3= +y x

One can easily deduce that, from the way that the equation is written,
values for y can be obtained by inputting values of x in the equation.
However, how this equation can be used if the problem is to obtain values
of x once values of y are available? Normally two procedures can be taken
in most of the programming languages. The first one, which may not be
used for some non-linear systems, is to rearrange the equation, isolating
the x on one side and shifting everything to the other, as follows:

3
2
−

=
y

x

A second option, called implicit approach, is to insert a dummy
variable (F) and shift all the terms of the equation to one side, letting the
dummy variable isolated as follows:

 2* 3=− + +F y x

Object-oriented Modelling for Scientific Computing204

And F must be zero. To solve this, there are different iterative
algorithms that one can provide an initial guess, and the algorithm
converges to find the root of the equation, i.e the values for x and y which
satisfies the constraint F = 0.

However, in Modelica an equation is declared in acausal model,
which means that it does not matter which variables are input or output
on it, the declaration is the same. That means for the example mentioned
above, the equation with the y on the left side can be used to find values
of x given some values of y. The casuality of the equation is unspecified
before solving the system. It just becomes causal once it is set the system
of equation to be solved.

According Fritszon (2003), the main advantage if this type of
modelling is that the solution direction is dependent on the direction of
the flow of data, defined by the inputs and outputs of the system. The data
flow context is defined by stating which variables are input and which
ones are output.

In this sense, a system can be solved in any direction. For example,
suppose a physical system of tank being filled and discharging at the
same time. The normal procedure is to find the tank discharge once the
inlet is defined as well as the geometries of the tank. In Modelica, the
problem can be totally inversed without rewriting the model, i.e to find
the inlet of the system once the outlet is defined.

Components, Connections and Connectors
There are three main characteristics that forms a Modelica complete
model:

• Components
• Connection mechanism
• Component framework
Components are connected through connection mechanism. These

network of connected components with each other forms the connection
diagrams. The component framework works as a driver, ensuring that
communication works and constraints are satisfied along the connection
network.

Object-Oriented Development and Programming 205

The component is a single Modelica class, with well-defined interfaces,
also called ports or connectors, used to communicate, send and receive
data from the outside world. The component should be defined outside
the world, so specific features of the simulation world are separated from
the definitions of the system itself, for reusability. A component can also
be composed by other components in a hierarchical structure.

Connections diagrams in Modelica are used to represent graphically
the interaction between components in a system. These connections
represent real physical dimensions, for instance electrical wires, pipes
with fluids, heat exchange between the components, etc. The components
are represented by, for instance, rectangles and connectors are represented
by small square dots on the extremes of it, denoting input/output ports.
The connectors are instances of the connector class of Modelica. This
class defines the variables that are transferred from linked components.
A simple example is given below:
connector Pipe
Pressure P;
flow Discharge Q;
end Pipe;

The Pipe connector contains two variables, Pressure and Discharge,
which is specially designated as a flow variable. The flow keyword
defines the type of coupling: which can be:

• For non-flow variables, equality coupling, according to
Kirchhoff’s first law;

• For flow variables, sum-to-zero coupling, according to
Kirchhoff’s current law;

For the example above, it means that connecting two components
will define that the Pressure is the same between the two ports, and the
discharge that leaves one components enters to the other component
(negative and positive discharge summing to zero).

AN OBJECT-ORIENTED APPROACH FOR
FUNCTION DIFFERENTIATION IN PYTHON
The following application is a modification of the example “Class
Hierarchy for Numerical Differentiation” developed by Langtangen
(2016).

The purpose of this chapter is to develop a simple program able
to differentiate any function using numerical techniques, and when
available, compare the numerical output with the analytical one. The
desired program interface enables the user to type as arguments of the
main program:

• The expression to be evaluated;
• The method of differentiating that should be used
• A value for the independent variable(s)
• Optionally, the analytical difference value for comparison

purpose
In summary, the user will provide in a command-line the following

directives for instance:

GENERAL
APPLICATIONS IN
SCIENTIFIC PROBLEMS

4
SECTION

Object-oriented Modelling for Scientific Computing208

numdiff.py ‘x**2’ Forward1 3 6
The program than provides the numerical approximation of the

difference. In the case above, it is known that the analytical difference is
given by:

()2

2 3 2*3 6= → = → =
d x

x x
dx

There are different ways of numerically obtaining this derivative.
The following are some of these methods:
1st – order forward difference

() () ()+ −
= +

y x h y xdy
h

dx h
σ

2nd – order forward difference
() () ()− −

= +
y x y x hdy

h
dx h

σ

2nd order central difference
() () ()2

2
+ − −

= +
y x h y x hdy

h
dx h

σ

4th order central difference

() () () () ()42 24 1
3 2 3 4

+ − − + − −
= − +

y x h y x h y x h y x hdy
h

dx h h
σ

Where ()nhσ holds the error of truncation. Because all of the methods
possess properties in common, it is natural to develop a superclass which
represents a generic differentiation method. Subclasses derived from it
will perform the differentiation according the desired algorithm. The
following code represents the generic parent class:
class Diff:
 def __init__(self, f, h=1E-5, dfdx_exact = None):
 self.f = f
 self.h = float(h)

General Applications in Scientific Problems 209

 self.exact = dfdx_exact
 def trunerror(self, x):
 if self.exact is not None:
 return self.exact(x) - self(x)

The superclass Diff has three class members, the function to be
differentiated (f), the finite step size (h), and a value of the analytical
difference that may be provided by the user, so one may be able to
compare the accuracy of the chosen method or of the chosen step size.

From this generic superclass, subclasses can be derived, according
each of the methods implemented in the program. The following is the
code for the implemented differentiation methods, each one defined as a
class.
class Forward1(Diff):
 def __call__(self, x):
 f, h = self.f, self.h
 return (f(x+h) - f(x))/h

class Backward1(Diff):
 def __call__(self, x):
 f, h = self.f, self.h
 return (f(x) - f(x-h))/h

class Central2(Diff):
 def __call__(self, x):
 f, h = self.f, self.h
 return (f(x+h) - f(x-h))/(2*h)

class Central4(Diff):
 def __call__(self, x):
 f, h = self.f, self.h
 return (4./3)*(f(x+h) - f(x-h)) /(2*h) - \
 (1./3)*(f(x+2*h) - f(x-2*h))/(4*h)

The code above is saved in file Diff.py. In order, not to mix the
differentiation classes which can be used in different programs with
the simple command line program here presented, the statements of the

Object-oriented Modelling for Scientific Computing210

program are defined in a different file. Python can import these classes in
the command line program using the statement:
from Diff import *

However, Python can only import the file if it finds it on the Python
Path. To include the folder that the file Diff.py was created in Python
Path, use the following directive:
import sys
sys.path.append(“directory/where/file/is/saved”)
In this way, Python adds to its path the directory and it is able to find the
module that should be imported.
The complete code for the command line program to calculate the
numerical difference is as follows:
import sys
from Diff import *
from math import *
from Equation import Expression
formula = sys.argv[1]
f = Expression(formula,[“x”])
difftype = sys.argv[2]
difforder = sys.argv[3]
classname = difftype + difforder
df = eval(classname + ‘(f)’)
x = float(sys.argv[4])
print(df(x))

When the user runs this program, it prints the value of the numerical
difference according the desired numerical method that the user required.
The following screenshot shows the testing of this program.

General Applications in Scientific Problems 211

Figure 1: Testing the numdiff program

DEVELOPMENT OF A SIMPLE OBJECT
ORIENTED SIMULATOR OF DYNAMICAL

SYTEMS
In this chapter, it explained and implemented step by step a simple
object-oriented simulator. A simulation software is a program capable
of modelling some phenomenon described by one or more mathematical
functions. In essence, the simulator allows the user to observe a process
without performing it.

There are simulation software’s in different areas, such as analysis
of power systems, behavior, weather conditions, electronic circuits,
chemical reactions and processes, biological and environmental
processes, feedback control systems, among a variety of other areas.

Besides simulating well-based mathematical functions, simulation is
also used to test new theories, and these results can be validated with
observed data of the event under analysis.

Simulations falls into two main branches: continuous simulation and
discrete simulation. Discrete simulations are used to describe events that
can be represented statistical events such as the arrival of clients in a
bank queue. Continuous simulations are used in a variety of physical
processes since these phenomena are non-discrete.

To start with a simple example, with develop a simulator algorithm
capable of modelling the following discrete equation:

1−=t tx ax

Object-oriented Modelling for Scientific Computing212

From the model equation, one can see that the variable x is a
function of time, and it is discrete since values from it are inferred at a
fixed sample rate of 1 (one). The variable a is a constant, and is referred
to as a parameter of the model. The parameter 1− =

t

t

x
a

x
 can also be seen as a

ratio between the subsequent values of 1− =
t

t

x
a

x
:

1− =
t

t

x
a

x

Before making any calculations, one can infer some possibilities
regarding the dynamics of the model, according the value of a :

If 0<a , the value of −∞ decreases indefinitely towards −∞

If 1a = − , the value of x oscillates between +x and −x

If 1 0− < <a , the value of x converges to 0 (zero)

If 0=a , the value of next x after the beginning of the simulation
will be always 0 (zero).

If 0 1a< < , the value of x decreases and converges to 0 (zero)

If 1=a , the value of 1>a is always constant, does not increase or
decrease

If 1>a , the value of +∞ is increases indefinitely towards +∞
So even a simple equation such as the one mentioned above can have

a variety of behavior. So much more are complex systems which depends
on a series of parameters, conditions and different equations depending
on a series of factors.

Before simulating the model, it is important to know that a simulation
has three important events, or methods:

• Initialization: The initial values for all states of the system
need to be configures at this phase.

• Observe: There are different ways of monitoring the states of
a system. One way is by collecting it in a matrix, by printing
them in the screen or performing any visualization of the
system.

• Update: In this moment, the states of the system are updated as
new time step is given. This part is defined as a function and it
runs repeatedly.

General Applications in Scientific Problems 213

Before starting to perform any calculation and any implementation of
a specific code, we can develop a template of the main simulator class,
which will perform each of the three steps of the simulation process
class Simulator:
 def __init__(self, f, x, t):
 self.f = f
 self.x = [x]
 self.t = [t]
 def observe(self, x, t):
 self.x.append (x)
 self.t.append (t)

 def update(self, N):
 N = 1
 # code goes here

The Simulator class is a generic simulator which we will extend to be
able to simulate the discrete system described above. To do so, we rewrite
the update function, which will at each time step, calculate the new state
value and observe it, until it reaches the number of steps required by the
user. The definition of this class is shown below:
class DiscreteSimulator(Simulator):
 def update(self, N):
 x = self.x[-1]
 t = self.t[-1]
 for i in range(N):
 x = self.f(x,t)
 t = t + 1
 self.observe(x,t)

The update of the states of the system is done by calculating the
provided function that defines the dynamics of the function under study.
In the present case, we can define this function as growth function as
follows:

Object-oriented Modelling for Scientific Computing214

def growth(x,t):
 return 0.2*x

Here we use the parameter a equal to 0.2, which means that the value
of x will converge to zero given enough simulation time. The initial value
of the state x, naturally, must be different from 0, otherwise nothing will
happen. The simulation can be performed and graphical visualization can
be generated with a few lines of code, as follows:
import matplotlib.pyplot as plt
x0 = 10.0
t0 = 0.0
discrsim = DiscreteSimulator(growth,x0,t0)
discrsim.update(30)
plt.plot(discrsim.t,discrsim.x)
plt.show()
plt.savefig(‘example.png’)

Here we define the initial state with a value of 10 and the initial
simulation time equal 0 (zero). In the following line, an instance of the
Discrete Simulator class is created with the function and the initial states.
The function update is used to evaluate the function in the given time
steps (30 time steps). Graphical visualization is easily generated with the
matplolib library, and the result is shown in the figure below.

Figure 2: Result for the simulation of na discrete model.

General Applications in Scientific Problems 215

To allow code extensibility, it is useful in Python to subdivide the
code in Modules, at each according its functionality. In the present case,
we may divide the code in the following components:

• One file with the definitions of the Simulator class and its
subclasses

• One file with the definition of the model which is being tested
• One file with the specific simulation conditions (initial states,

number of steps)
• One file to generate instances of the classes involved in the

problem and to perform the simulation itself.
This type of code division allows modularity, and allows the user as

well as the developer to focus on different parts of the problem when
looking different files, as well as not to do modifications on files in the
final version.

Now it is desired to extend the simulator, to be able to deal with
models with multiple variables. To do so, we assume the following
discrete model:

1 10.5 − −= +t t tx x y

1 10.5 − −= − +t t ty x y

0 01, 1= =x y

To be able to implement additional states, we make use of numpy
library to use arrays to store the states. The observation will now be
stored in a new class which allows the Simulator class to be responsible
only for carrying out the simulation, and at each simulation time calling
the observer which will perform the recording of the simulation data. The
classes are stored in a file by the name Simulator.py
import numpy as np
class Simulator:
 def __init__(self,f,x,t):
 self.f = f
 self.x = x
 self.t = t

Object-oriented Modelling for Scientific Computing216

 def update(self,N):
 N = 1
 # code goes here

class Observer:
 def __init__(self,x,t,N):
 self.x = np.zeros((len(x),N+1))
 self.t = np.zeros(N+1)

 def __call__(self,x,t,i):
 self.x[:,i] = x
 self.t[i] = t

class DiscreteSimulator(Simulator):
 def update(self,N):
 self.simobs = Observer(self.x,self.t,N)
 x = self.x
 t = self.t
 self.simobs(x,t,0)
 for i in range(1,N+1):
 x = self.f(x,t)
 t = t + 1
 self.simobs(x,t,i)

By using numpy arrays, the Observer class is able to store any number
of states. The model definition is written in a file ModelConfig.py, as
follows.
def model(x,t):
 x1 = 0.5*x[0] + x[1]
 x2 = -0.5*x[0] + x[1]
 return x1,x2

General Applications in Scientific Problems 217

The initial conditions and the number of steps in the simulation are
now defined also in a separate file, named InitConfig.py- The data in this
file is as follows:
t = 0.0
x = [1.0,1.0]
N = 30

In this file, it can be seen that it was chosen not to use two different
variables to solve the problem as the set of equations suggested, but
instead we want to keep the same number of arguments in the model
definition, so the program will be able to run for one or for multiple states
problem.

The last file, used to create the instance of the classes to simulate and
to perform the simulation itself is written in the file workflow.py. The
code for this file is shown below.
import matplotlib.pyplot as plt
from InitConfig import *
from ModelConfig import *
from Simulator import *
discrsim = DiscreteSimulator(model,x,t)
discrsim.update(N)
t = discrsim.simobs.t
x = discrsim.simobs.x[0,:]
y = discrsim.simobs.x[1,:]
plt.plot(t,x,t,y)
plt.savefig(‘example.png’)
plt.show()

Now it is necessary to import the other program modules in order to
run it properly. This is done using the directive import in the top of the
code. Visual output is generated using the Matplotlib, and shown below.

Object-oriented Modelling for Scientific Computing218

Figure 3: Results for the dicrete model with 2 states.

The program can be evaluated for different parameters of this model,
and the user will see that only certain kinds of behaviors are possible
in this system. The model may show exponential decay or growth or
oscillatory behavior. The linearity of this type of model can be checked
by performing a plot of one state against the other, what is called x-y
phase space.

From the plot above, it can be seen that the system is in an oval,
period system. This type of dynamics is typical of linear systems.

General Applications in Scientific Problems 219

Application of the object-oriented simulator to
Predator-Prey model
The predator-prey model is a famous mathematical description of
ecological interaction between two species, also known as Lotka –
Volterra equations. Basically, the model assumes that the dynamics of the
predator-prey relationship can be modelled by the following assumptions:

• Prey grows if there are no predators
• Predators decay if there are no preys
The scenario implemented by the model can be summarized as

follows: Suppose a closed ecological system, where no migration occurs
out or into the system. This ecosystem is composed by only 2 typed of
animals: the predator and the prey. In this simple configuration, the food
chain can be represented as below:

Figure 4: Ecological dynamics of the predator prey model.

The prey has an infinite amount of available food to eat. The
interactions between predator and prey can be defined according the
following events:

• The prey’s death rate increases as the predator population
increases.

• The predators’ growth rate increases as the prey population
increases

With this assumption, the size of the predator and the prey populations
can be described by a system of 2 nonlinear differential equations.

−′ =x Ax Bxy

+′ = −y Cy Dxy

Object-oriented Modelling for Scientific Computing220

Where 'x is the rate of change in the prey population size, x is the
prey population size.. y is the predator rate of change in the population
size, and y is the predator population size.. The parameters A, B, C and
D describes the interactions between the two species.

A short history on the Lotka-Volterra model
In 1910, Alfred J. Lotka proposed the predator-prey model as a theory
for autocatalytic chemical reactions. In 1920, the model was extended by
Andrey Kolmogorov to represent the interactions among an herbivorous
animal and a plant specie. The set of equations was published in 1926 by
Vito Volterra, inspired by the marine biologist Umberto D’Ancona who
became his son-in-law.

The model was later extended in order to include prey-growth, and it
has been commonly applied to evaluate the dynamics of some species on
different parts of the globe.

Implementation of the model in the object-oriented Simulator
To be able to implement the model, it first needs to be transformed from
continuous to discrete mode. The discretization can be done using Forward
Euler time integration, in which case the set of equations become:

1+ = + −t t t t tx x Ax Bx y

1+ = − +t t t t ty y Cy Dx y

Assuming A = 0.01, B = 0.001, C = 0.01 D = 0.005. Before performing
any calculations, as the project grows, it requires better organization so
every data and code can be easily found. By structuring the program
using tree directory, different models and tests can be performed, without
messing with the main code and avoid repeating the same lines. The
following organization may be followed:

General Applications in Scientific Problems 221

Figure 5: Directory tree for the simulator Project – Version 0.1

The program is now subdivided into three main folders:
• Models: This folder holds the modules with definitions on each

model. One model can be composed of a single function, a set
of functions, one single class or a set of classes and functions.
It is desirable to keep the level of complexity open, so the
simulator is a flexible program.

• Src: The abbreviation stands for Source Code, and is the
place where the main code to run the simulator stays. For the
moment, the folder holds a single module, Simulator.py, with
the definition of the Simulators classes as developed before.

• Tests: Any result that one may desire to store can be placed
under the tests folder, in a subfolder with an appropriate name
holding all the files that the user may have generated as output,
such as graphs, spreadsheets and so on.

To do the first implementation of the Predator-Prey model, navigate
to the folder and create a module “PredatorPreyv1.py”. The “v1” at the
end of the file name indicates that this is the first version, or the first
attempt to solve this problem. The code inside this file is written below:
def model(x,t):
 A = 0.5

Object-oriented Modelling for Scientific Computing222

 B = 0.2
 C = 0.5
 D = 1
 x1 = x[0] + A * x[0] - B * x[0] * x[1]
 x2 = x[1] - C * x[1] + D * x[0] * x[1]
 return x1,x2

Changes must also be made to the file “workflow.py”, to properly
import all the modules and run the simulation. The import statements are
rewritten according the following code:
from src.Simulators import *
from models.PredatorPreyv1 import *
from tests.preypredatorv1.InitConfig import *

A first attempt to run the simulation can be done, by assuming the
initial population of gazelles (preys) to 100, the lion population also to
10, and 30 time steps. By doing so, the following output is obtained.

Figure 6: Simulation of predator-prey model – First attemp.

From the figure above, one can see that, as expected, because the
population of gazelle is relatively high in comparison to the lion, there
is an initial decrease in the gazelle’s population, with a parallel increase

General Applications in Scientific Problems 223

in the lion’s population. This means that the predator is consuming the
prey, and consequently reproducing, while the prey’s reproduction is not
enough to keep its population constant, so it decreases.

One may also extrapolate ideas from the simulation, inferring that,
because the lion’s population is steadily growing, the gazelle’s population
will at some point in time reach zero, and so the lion population will
also die because of the lack of prey. However, mental extrapolations of
dynamical systems are very dangerous and can arise wrong conclusions.
To do a proper inference regarding the population’s size, we need to run
the model of a larger period of time.

The following figure shows the results for this simulation using N
(time steps) = 3000.

Figure 7: Simulation of predator-prey model. Second attemp

The mental extrapolation that the gazelle population would be
exterminate showed itself wrong according the results obtained for a
larger simulation time, as shown above. And also a quasi-steady-state
can be seen from the behavior of the two species, with an increase of the
gazelle population, followed by an increase of the lions population with
consequent death of gazelles, and the reduced availability of gazelles

Object-oriented Modelling for Scientific Computing224

also diminishes the lion population, what makes the gazelle population
grow again. This pattern is repeated over and over again.

Again, we can perform an analysis on the x-y state phase diagram to
retrieve information regarding the (non) linear dynamics of the system.
The following figure illustrates this diagram:

Figure 8: x-y state phase diagram for predator prey model.

From the figure above, it can be seen that the oscillations are not
constant, but are monotonically changing in amplitude, either for
increasing or for decreasing. In this case, if we simulate the model for
enough time, one can see that the oscillations are continuously increasing.

Incorporating object-oriented programming in the
model – Predator Prey example
Until this step of development, the simulator previously written is
object-oriented. However, the model is implemented using functional
programming. The concepts of the prey and the predator using this
feature as very abstract. So, the next step is to incorporate object-oriented
concepts in the model itself, in such a way that it can easily be extended.
In the present case, it is desirable to have a predator-prey model which

General Applications in Scientific Problems 225

can incorporates different species and expand from a dual interaction to
multiple interactions in a complex ecosystem.
If we think in the prey as an object, and predator as another object, then
these concepts can be incorporated into one (or more) classes and the
interaction between them, defined inside the methods of the class.

As an initial approach, in order to not raise the complexity of the
system too much, one may think that both the predator and the prey
are Animals, so in this sense, both belongs to the same class. The class
Animal that is here developed refers not only to a single animal but to
the population of animals which share the same characteristics, i.e all the
prey animals with the same parameters dynamics will make one instance
of the class Animal. In a single model, one may have different prey that
interacts with the predator in different forms. In this case there will be
different instances of Animals representing preys.

In the previous formulation it was shown that the model representing
the dual interaction between species has four parameters (A, B, C, D).
However, B and D are parameters multiplied by two interacting species.
On the other hand, the parameters A and C are multiplied only by the
species population that the equation represents.

Two represent this dynamic, we develop one class with three class
members:

• Population: refers to the number of animals in the group
• birthrate: a number that represents the ratio of increase of the

animal population due to the actual number of individuals.
• Interactionrate: a number that represents the ratio of change in

a population to the interaction between the actual specie with
another (dual interaction).

Each term of the prey-predator equation prey represents an important
dynamic process in the ecosystem. In the class Animal, these processes
are represented by two methods:

• Reproduce: This method calculates the balance between the
amount of individuals that were born minus those who died of
natural death, minus the immigration.

• Interact: This method calculates the change in population due
to the interact with other populations. In this case, the change

Object-oriented Modelling for Scientific Computing226

in the population hunted diminishes while the change in the
hunter population increases.

The code developed for this class is saved in the module
“PreyPredatorv2”, so we develop a refined version (version 2) of the
Prey-Predator model, using object-oriented features. The following is the
code for the Animal class:
class Animal:
 def __init__(self,population,A,B):
 self.population = population
 self.birthrate = A
 self.interactionrate = B

 def reproduce(self):
 A = self.birthrate
 return A*self.population

 def interact(self,other):
 B = self.interactionrate
 return B*self.population*other.population

A few changes have also to be made on other parts of the code. The
rest of “PredatorPreyv2.py” module is written as follows:
A = 0.01
B = -0.001
C = -0.01
D = 0.0002
gazelle = Animal(100.0,A,B)
lion = Animal(10.0,C,D)

def discrmodel(t):
x[0] - gazelle population
x[1] - lion population

General Applications in Scientific Problems 227

 x1 = gazelle.population + gazelle.reproduce() + gazelle.interact(lion)
 x2 = lion.population + lion.reproduce() + lion.interact(gazelle)

 if x1<0:
 x1=0
 if x2<0:
 x2=0

 return x1,x2

def set_states(x):
x[0] - gazelle population
x[1] - lion population

 gazelle.population = x[0]
 lion.population = x[1]

def get_states():
x[0] - gazelle population
x[1] - lion population

 x1 = gazelle.population
 x2 = lion.population
 return x1,x2

The same parameters used to test the version 1 of the predator-prey
model are again used, to check the correctness of the model. The main
model function was renamed to discrmodel, so it explicitly express that
this is a discrmodel. This was done because the next step is to develop a
continuous model.

Two new functions are incorporated into the program, the get_states
() and the set_states (). These methods are used during the simulation

Object-oriented Modelling for Scientific Computing228

process to update the value of the states in each object instance, and to
retrieve when necessary the actual value of the states inside the objects.

Shifting the focus to the main source code, minor changes had to
be made to the “Simulators.py” module. The simulator must be able to
access the get_states () and set_states () methods. So, these methods
are new class members of the Simulator class. Additionally, because the
discrmodel now takes only one argument (the simulation time), this is
also reflected in the new code. And the set_states () method is called at
each iteration of the simulation to update the states in the objects. The
modified constructor method for the Simulator parent class then reads:
class Simulator:
 def __init__(self,f,x,t,statesetter,stategetter):
 self.f = f
 self.x = x
 self.t = t
 self.statesetter = statesetter
 self.stategetter = stategetter

And the modified update () function of the DiscreteSimulator class is
now according the following code:
 def update(self,N):
 self.simobs = Observer(self.x,self.t,N)
 x = self.x
 t = self.t
 self.simobs(x,t,0)
 for i in range(1,N+1):
 x = self.f(t)
 t = t + 1
 self.statesetter(x)
 self.simobs(x,t,i)

Taking these modifications into account and running the simulation
should produce the exactly same result as the example using version 1 of
the predator prey model.

General Applications in Scientific Problems 229

In order to show the elegancy of the object-oriented approach and the
clear representation of each element in the model using this technique,
we extend the system under test by adding an additional population and
comparing how the whole ecosystem reacts to the insertion of this third
element. Let’s say the baboons are now present, with an initial population
of 100. The baboons are assumed to be able of reproducing with a ratio
two times bigger than the gazelles, however they are also two times more
hunted by the lions. For simplicity, the ratio of interaction from the lions
to the gazelles and from the lions to the baboons to the be the same.

The rewritten code to represent this new ecosystem is shown below:
A = 0.01
B = -0.001

C = -0.01
D = 0.0002

E = 0.02
F = -0.002
gazelle = Animal(100.0,A,B)

lion = Animal(10.0,C,D)

baboon = Animal(100.0,E,F)

def discrmodel(t):
x[0] - gazelle population
x[1] - lion population
x[2] - baboon population

 x1 = gazelle.population + gazelle.reproduce() + gazelle.interact(lion)
 x2 = lion.population + lion.reproduce() + lion.interact(gazelle) + lion.
interact(baboon)

Object-oriented Modelling for Scientific Computing230

 x3 = baboon.population + baboon.reproduce() + baboon.interact(lion)

 if x1<0:
 x1=0
 if x2<0:
 x2=0
 if x3<0:
 x3=0

 return x1,x2,x3

The functions get_states () and set_states must also incorporate
the new state, namely the baboon population, but as this step is straight
forward there is no need to show it here. The result for simulating 3000
time steps is shown in the figure below.

Figure 9: Results for the prey-predator model with three populations.

The reader may try to see how this system behaves with different
parameters of birth rate, interaction between population, and different
populations. The object-oriented approach in this case helps to see in a

General Applications in Scientific Problems 231

non-mathematical form the elements that forms the equation. Without
using this resource, the populations are only represented by a value of a
variable, “x” for instance, and the meaning of what x stands for is a bit
more hidden.

Translating Predator Prey discrete model to continuous model
The next natural step in the development of the Predator – Prey model is
to use a continuous model, since the original model is described in terms
of the derivatives of the population according:

= −dx Ax Bxy

= − +dy Cy Dxy

In the way that is written above, the model can not be solved
numerically. In order to simulate, it is necessary to discretize it in space.
One can apply the Forward Euler time integration as already mentioned
above:

The main difference from this discrete model to the one developed
before, is that the one can keep track of the time step given, increasing
or decreasing it in order to have a stable continuous model. The above
discretization is just one of the methods that can be used. Another very
common method is the Backward Euler, or the 4th order Runge Kutta and
other algorithms similar to these.

There are no big changes in the main code, expect that implementation
of the time integration algorithms to solve the model. The following code
reflects the definition of the function used to calculate the Forward Euler
integration and the Runge Kutta in a simple form:
def ForwardEuler(f,t,dt,x):
 dx = f(t,x)

 x = x + dt * dx
 return x
def RungeKutta4(f,t,dt,x):

Object-oriented Modelling for Scientific Computing232

 k1 = f(t,x)
 k2 = f(t+dt/2,x+dt/2*k1)
 k3 = f(t+dt/2,x+dt/2*k2)
 k4 = f(t+dt,x+dt*k3)

 x = x + dt/6*(k1+2*k2+2*k3+k4)
 return x

The class ContinuousSimulator replaces the DiscreteSimulator class
to perform the necessary calculations in this case. An additional class
member, solver, stores which time integration algorithm is to be used.
Regardless of that, minor changes in the update method are implemented,
and the code then becomes:
def update(self,N,dt):
 self.simobs = Observer(self.x,self.t,N)
 x = self.x
 t = self.t
 self.simobs(x,t,0)
 for i in range(1,N+1):
 x = self.solver(self.f,t,dt,x)
 t = t + dt
 self.statesetter(x)
 self.simobs(x,t,i)

USING THE OPENMDAO FOR MODEL
DEVELOPMENT AND SIMULATION

OpenMDAO is a high-performance computing platform for systems
analysis and optimization that enables you to decompose your models,
making them easier to build and maintain, while still solving them in
a tightly-coupled manner with efficient parallel numerical methods
(OPENMDAO, __).

Along with the software, a library of sparse solvers and optimizers
are provided which are able to work with the MPI based, distributed

General Applications in Scientific Problems 233

memory data passing scheme. Nevertheless, the user can also choose not
to obtain MPI, in which case OpenMDAO runs efficiently in serial using
numpy data passing implementation.

The software claims unique capability regarding automatic analytic
multidisciplinary derivatives. As long as the user provides the analytical
derivatives of the components, OpenMDAO is capable of solving the
chain rule across the model, computing system level derivatives for
Newton solvers and/or gradient based optimizers. With this feature, the
solution of large non-linear problems is possible, even for models with
over 25 thousand variables using adjoin derivatives.

If analytical derivatives of the components are not available,
OpenMDAO is callable of translating them numerically to finite
difference components and computes semi-analytic multidisciplinary
derivatives. The ability of the software to make use of semi-analytic
derivatives increases computational efficiency greatly. For instance, the
computation of an aero-structural wind turbine optimization could be
reduced 5x when compared with traditional approaches.

Installation of the software
One can install OpenMDAO easily using a single line in the command
prompt:
>> pip install openmdao

A second option is to obtain the most recent version of OpenMDAO
from the Github repository using the following line in a command prompt:
>> pip install git+http://github.com/OpenMDAO/OpenMDAO.git@
master

OpenMDAO is available for Windows, MacOS or Linux systems.
The supported platforms of MacOS are:

• Mavericks (10.9.5)
• Yosemite (10.10.5)
• El Capitan (10.11.x)
For Windows the following platforms are supported:
• Windows 7
• Windows 8

Object-oriented Modelling for Scientific Computing234

• Windows 10 (not officialy)
The platforms for Linux are:
• Trusty Tahr
• Vivid Verdet
• Xenial Xerus
The prerequisites for OpenMDAO are Python, including the basic

packages for scientific computing Numpy and Scipy. The supported
versions of Python are 2.7.9 and 3.4.3, although it may also work in more
recent versions. The Numpy library should be version 1.9.2 or above.
Scipy package supported is 0.15.1 or above.

Basic Object-Oriented modeling with OpenMDAO
This section describes the basic concepts and tools used in OpenMDAO
to define correctly a problem and to solve it.

A System is the basic concept in OpenMDAO. Systemas are related
to Components and Groups. Component is the computational class in
OpenMDAO, where the user develops the model and wrap external
analysis code. Group are collections of Components and other sub
Groups with data passing and execution sequence. Problem contain the
whole model.

System
In 2015, Hwang developed a mathematical architecture called Modular
Analysis and Unified Derivatives, representing an unique abstraction
to model large system represented by many smaller components. This
architecture is the basis of OpenMDAO.

The fundamental concept of the Modular Analysis and Unified
Derivatives (MAUD) is that an entire system can be represented as a
hierarchical set of systems of (non) linear equations. This architecture is
composed by a fundamental building block referred to in OpenMDAO as
System block. This class represents a system of equations that needs to
be solved together in such a way that a single solution satisfies them all.

A system of equations is composed of input values (parameters) and
output values (unknows). Suppose as an example the linear equation
below:

General Applications in Scientific Problems 235

2 3= +y x

A system defined by the equation above has 1 parameter, or input
value (x) and one output value (y). The above equation is said to be
explicit, since the required output variable is isolated from the rest of the
equation and can be directly obtained by calculating the right hand side
of the equation.

Another way to represent the same equation is to make it implicit.
Using this approach, a residual (which should be zero) is equal to the
equation shifted to one side of it. The system composed by one linear
equation stated above could be rewritten in the implicit form as:

() 2 3 0= − − =R y y x

In this configuration, the system acquires a new attribute, called
resids, which stores the list of residuals for efficient processing.

The equations are defined in one method of the System class called
solve_nonlinear(). This method can directly calculate the value of
unknows for explicit equations, or find the correct value for the states
that converges the residuals to zero.

Another method of this class, apply_nonlinear() computes the
residuals values of a state. This function is not used if the system is
defined only by explicit equations.

The Component class and the Group class are subclasses of the
System.

Component
According the definitions of the OpenMDAO, Component is the child
class of Subsystem that composes the lowest level system. The classes
that are derived from it are the only ones allowed to create parameter,
output, and state variables. The development of new models is done by
subclassing the Component class and defining a solve_nonlinear and/
or apply_nonlinear methods which defines the specific dynamics of
processes under study.

The necessary variables are added to the class in the constructor
(__init__) using the methods add_parameter, add_output and add_state

Object-oriented Modelling for Scientific Computing236

functions. In the following code, a simple component is created and
parameters, outputs and states are added to it.
class MyComponent(Component):
 def __init__(self):
 super(MyComp, self).__init__()
 self.add_param(‘a’, val=0.)
 self.add_output(‘b’, shape=2)
 self.add_state(‘c’, val=[-1., 1.1])

It is necessary to specify initial values for the variables of the
component, so the program can efficiently allocate the needed space in
the vectors for data passing. The default shape for a single value if float,
while the default shape for a vector is numpy float array.

The method solve_nonlinear() takes as arguments the parameters, the
unknown vectors and a residuals vector. These are stored as dictionaries
in the Component class, so the reference to them is done as one would
do with any dictionary in Python. The following code exemplifies this
method:
def solve_nonlinear(self, params, unknowns, resids):
 unknowns[‘y’] = 2 * params[‘x’] + 3

If the solve_nonlinear method defines any implicit equation, then the
apply_nonlienar method must be implemented. The function calculates
the residuals for the given parameters and states. In OpenMDAO, two
options can be used to define how to converge implicit equations:

• OpenMDAO solver
• Make the component converge itself.
The definition of analytical derivatives can be done in a component

by overriding the linearize method. This method linearizes the non-linear
equations and delivers the partial derivatives to the framework.
def linearize(self, params, unknowns, resids):
 J = {}
 J[‘y’,’x’] = 2
 J[‘y’,’y’] = 1

General Applications in Scientific Problems 237

Group
The Group class is used to collect smaller objects in order to organize
complex system into sub-units. Groups can be formed by a collection
of components or a collection of smaller groups. In essence,, Group is a
System object instance composed of the equations from its children that
are linked via data connections.

The fact that a Group can hold other groups in OpenMDAO creates
a powerful object-oriented interface. This configuration allows complex
systems to be seen in a simple way, where in the higher level the main
concepts are seen, and the inner levels intrinsic dynamics and details of
the system are presented without making the whole system too much
confusing.

The creation of Groups in the framework is done by adding one or
more Systems or Groups, or even a mixture of them.
comp1 = MyComp()
comp2 = MyComp()
comp3 = MyComp()
comp4 = MyComp()
group1 = Group()
group1.add(‘comp1’, comp1)
group1.add(‘comp2’, comp2)
group1.add(‘comp3’, comp3)
group2 = Group()
group 2.add(‘comp4’, c3)
group 2.add(‘sub_group_1’, group1)

The dependencies among systems in a group are represented by the
connections between the variables in the Group’s subsystems. These
connections can be estabilished in two ways: explicitly or implicitly.

The explicit connection estabilished the flow of information from one
ouput (or state) of the System to an input (parameter) of another system
using the Group connect method. For instance:

Object-oriented Modelling for Scientific Computing238

Group1.sub_group_1.connect(‘comp1.y’, ‘comp2.x’)
The implicit connection is established using the promotion mechanism

in a Group. Whenever, a System is added to a Group, variables can be
specified to be promoted from the subsystem to the group level. In this
way, a variable can be referred as it was from the Group instead of the
Subsystem which it belonged originally.

Group1.add(“comp1”, component1, promotes=[‘y’])
If multiple variables subsystem are promoted with the same name,

then those variables will be implicitly connected.
A Group is an element of the architecture of OpenMDAO used to

assemble multiple system of equations and solving them together. In
this sense, they differ from the Component class which is used to define
variables and equations that defines the transformations inside the system.
The Group class uses a Solver to solve the collection of Components is
it was a single problem. Two solvers are implemented: a linear solver
and a non-linear solver. The default linear solver is Scipy GMres and
the default non-linear solver is a RunOnce solver. This last one will call
the solve_nonlinear method on each system in the Group sequentially.
Besides the default ones, there is a collection of other linear and non-
linear solvers that can be used in replacement of the defaults.

Problem
The problem is a single instance, top-level element used to couple all the
Groups forming the Model itself. The Problem instance can be used to
perform analyses, to design experiments or to do optimization-.

The Problem has a single top-level Group called root. This group can
be attributed to the Problem instance when creating it, via the constructor,
or passed later. The following is an example of creating a problem and
passing the root group via the constructor.
prob = Problem(ExampleGroup())

In order to control the solution of the problem, OpenMDAO uses a
driver class. The base Driver class is the simplest driver, which works
by simply calling the solve_nonlinear method on the root Group.
Nonetheless, there are a variety of other drivers available to perform
different experiments, such as optimization, case iteration and design of
experiment drivers. The driver is the object which determines how the

General Applications in Scientific Problems 239

problem will be solved.
The simulation is called by first setting up the problem and then

calling the method run, as follows:
prob.setup()
prob.run()

TANK SYSTEM MODELLING
In the following section, it is implemented an object-oriented approach
for modeling a system of fluid tanks using the programming language
Python. This is a simple but useful type of process, especially in chemical
engineering problems, and it can be further extended with additional
process dynamics, such as chemical reactions that occur in the tank,
heating jackets and other features. The approach here developed can be
also used to other unit operations in chemical and process engineering.

The system of tanks can be represented by the figure below. There is
a continuous source of fluid to the system, with a known amount of fluid
per time

Figure 10: Tank system representation.

Some features of the system here implemented are:
• There is no interaction between the levels of each tank. This

means that the level in the second tank does not interfere with
the level of the first one.

Object-oriented Modelling for Scientific Computing240

• Each tank has a constant cross section area. The system can be
further extended to also represent tanks with a table relating
fluid level and cross section.

• The discharge of teach tank is proportional to the square root
of the fluid level, according:

 = vq C h

Where q is the discharge, h is a coefficient of discharge and h
is the fluid level in the tank.. This equation comes from a simplified
representation of the Bernoulli equation shown below:

2

0 2 / 4
100
 =  
 

d
q g hc π

Where g is the gravitational acceleration, d is an dimensionless
discharge coefficient, and d is the diameter.

The objective is to obtain the states and outputs of the system, i.e,
the fluid levels and the flows given as boundary condition the flow at the
source at some points in time.

The system can be represented using the continuous state-space
representation:

(), ,= …x f t x

Where x is the derivative vector of the states, t is the time, x is the
state vector (fluid level at each tank),

(), ,…f t x
 is the output vector (discharge

of each tank), and (), ,…f t x and (), ,…g t x are (non) linear functions
representing the dynamics of the process.

The first step is to solve the problem is to apply the material balance
to each tank, i.e, the amount of fluid entering minus the amount leaving
is equal to the rate of accumulation of fluid in the tank. In mathematical
representation:

= −i out

dh
A q q

dt

General Applications in Scientific Problems 241

Where iq is the cross-section of the tank, iq is the inflow and outq
is the outflow, governed by the Bernoulli equation described above.
Representing each tank dynamics in state-space representation:

/= −

i outh q q A

=out vq C h

Developing the above representation for each tank in the system, the
state space representation is extended to the vector form:

ÿ

1
1 1 1ÿ

2 1 2 2 2
ÿ

2 3 3 3
3

/ /
 / /

/ /

 
     
     = −     
         
 

i

h
q A q A

h q A q A

q A q A
h

11 1

2 2 2

3 3 3

         = −                

v

v

v

hq C

q C h

q C h

To solve this problem, one can apply Forward Euler time integration
scheme to the derivatives of the state. With this approach to complete
system is update at each time step using the following set of equations:

Object-oriented Modelling for Scientific Computing242

First approach – Functional programming
To show the advantages of the object-oriented programing when
solving this type of problem, it is first implemented a direct, functional
programming approach to solve the problem of the three tank system.
The functional programming, as the name depicts, is a code composed of
functions defining the problem and how to solve it. The main advantage of
this type of approach is that the rapidly development of simple problems
allows one to solve them quickly. However, it is difficult to extended
such codes and, once the problems becomes more and more complex, it
can become confusing to identify the functionality of each component of
the program.

The first step consists of writing a function describing the problem
of the three tanks. In Python, the code for this problem can be written as
follows:
import numpy as np
def system_of_tanks(t,x,t_table,q_table,valve,A,ce):
 h0 = x[0]
 h1 = x[1]
 h2 = x[2]
 dx = np.zeros(3)
 y = np.zeros(3)

 qi = np.interp(t,t_table,q_table)
 y[0] = ce[0]*valve[0]*np.sqrt(h0)
 dx[0] = (qi - y[0])/A[0]

 y[1] = ce[1]*valve[2]*np.sqrt(h1)
 dx[1] = (y[0] - y[1])/A[1]

 y[2] = ce[2]*valve[2]*np.sqrt(h2)
 dx[2] = (y[1] - y[2])/A[2]

General Applications in Scientific Problems 243

 return dx,y

The code is straight forward. As input to the function, it is given the
previous states of the system, the current time, the flow source data, the
opening of the valves in the outlet of each tank, the cross section of the
tanks and the discharge coefficient. The function returns the derivative of
the states (the derivative of the fluid level in each tank) and the current
ouputt (the discharge of each tank).

This function can be used to solve a variety of problems consisting
of different flow sources condition, different tanks geometries and
coefficients of discharge of the tanks. Nonetheless, it is strict with regards
to a system of three tanks connected in series without interaction from
downstream to upstream. If one desires to test the effect of adding one
more tank or providing interaction among the tanks, then the function
must be rewritten. This step can lead to errors in the code and can be even
difficult to trace.

The rest of the code consists in defining the flow source condition,
the valves opening, tank cross sections and coefficient of discharges.
A second function (spreadsheet) derived from the first one is written
applying the definitions on the variables mentioned above, and the
problem is simulated using the Forward Euler time integration scheme
according the code below.
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
tq = [0,100]
 q_table = [10,10]
 valve = [1.0,
 1.0,
 1.0]
 A = [2,
 2,
 2]
 ce = [5,

Object-oriented Modelling for Scientific Computing244

 4.5,
 4]

 spreadsheet = lambda t,x: system_of_tanks(t,x,tq,q_table,valve,A,ce)

 N = 151
 dt = 0.1
 t = np.zeros(N)

 x = np.zeros([3,N])
 y = np.zeros([3,N])

 for i in range(N-1):
 dx,y[:,i] = spreadsheet(t[i],x[:,i])
 if t[i]>10.0:
 valve = [0.5,0.5,0.5]
 x[:,i+1] = x[:,i] + dt*dx
 t[i+1] = t[i] + dt

 df0 = pd.DataFrame(y.transpose(),t)
 df1 = pd.DataFrame(x.transpose(),t)
 frames = [df0,df1]
 df = pd.concat(frames,axis = 1)
 df.to_csv(‘example.csv’)

 plt.figure()
 plt.subplot(2,1,1)
 plt.plot(t,x[0,:],’b-’,linewidth=3,label=’h0’)
 plt.plot(t,x[1,:],’r-’,linewidth=3,label=’h1’)
 plt.plot(t,x[2,:],’k-’,linewidth=3,label=’h2’)

General Applications in Scientific Problems 245

 plt.ylabel(‘Tank Level’)
 plt.legend(loc=’best’)
 plt.subplot(2,1,2)
 plt.plot(t,y[0,:],’b-’,linewidth=3,label=’q0’)
 plt.plot(t,y[1,:],’r-’,linewidth=3,label=’q1’)
 plt.plot(t,y[2,:],’k-’,linewidth=3,label=’q2’)
 plt.ylabel(‘Tank Level’)
 plt.legend(loc=’best’)
 plt.show()

The code above produces a .csv file with the simulated outputs
(“example.csv”) and a graphical output, as shown below.

In order to better visualize the dynamics of the system, the valves
opening were halved at t = 10 s so as to disturbe the steaty state already
reached by the 1st tank around t = 4 s. In the following approaches, the
result of the program is exactly the same regarding the values of the
states and of the outputs. However, it is shows that the advantage of
using an object-oriented approach is the clear functionality of different
components of the code and easy extensibility for more complex systems
(interacting tanks, more tanks in series, controlling the tanks level, etc).

Object-oriented Modelling for Scientific Computing246

Second approach – Improved Functional programming
In this approach, the first tentative in representing the tank system is
extended by decomposing the single function representing the dynamics
of the process into subfunctions. One function represents the dynamics
of each tanks. The second function incorporates this function, coupling
them and generating the tanks system.

With this approach, the functional programming is more easily
extensible than the first one. As the dynamics of each tank does not
change, more tanks can, in a clearer way, be added to the problem in a
way that is more next to the object-oriented approach.

The function representing the dynamics of each tank is written
according the following code in Python programming language:
def tank(t,x,qi,valve,A,ce):
 y = ce*valve*np.sqrt(x)
 dx = (qi - y)/A
 return dx,y

This function can be incorporated into another to represent a single
tank system or even a series of many tanks. The function that incorporates
the one above and represent the three tank system is the one written
below. In this function, notice how the subfunction “tank” is called and
how clearer is this code regarding the readability and understanding of
what type of structures is the system composed of.
def system_of_tanks(t,x,t_table,q_table,valve,A,ce):
 h0 = x[0]
 h1 = x[1]
 h2 = x[2]
 dx = np.zeros(3)
 y = np.zeros(3)

 qi = np.interp(t,t_table,q_table)
 dx[0],y[0] = tank(t,x[0],qi,valve[0],A[0],ce[0])

 dx[1],y[1] = tank(t,x[1],y[0],valve[1],A[1],ce[1])

General Applications in Scientific Problems 247

 dx[2],y[2] = tank(t,x[1],y[1],valve[2],A[2],ce[2])

 return dx,y

The rest of the code is exactly the same as depicted for the first
functional programming approach shown. However, this type of
programming has clear advantages in comparison with the last one,
regarding extensibility and readability.

Third approach – Object-Oriented programming
The next approach consists into a big modification of the whole procedure
of calculating, in order to develop a full object -oriented approach of the
system under study. It will be clear by the end of this section that this
procedure is much more flexible and easily extensible than the former
approaches.

It is intuitive that the tanks in the system are objects, pertaining to
a class that defines a generic tank of any cross section and what are the
dynamics of any tank. Additionally, the inflow source is also an object of
a generic Source class, that defines any table of data against time given
as input to a system. The output of the tanks is regulated by valves, which
are also seen as objects of a generic Valve class.

Any of these classes mentioned above can be seen as a generic Unit,
with connections which are referred to as Inlet and Inlet. Moreover, the
generic Unit class pre-defines some methods that are common to the
subclasses. These methods are the equation method, which defines the
dynamics of all the units pertaining to a subclass, and an apply state
function which is used at the end of each simulation step to update the
states of the unit. The code for the Unit class is written in Python as
follows:
class Unit:
 def __init__(self):
 self.Inlet = []
 self.Outlet = []

Object-oriented Modelling for Scientific Computing248

 def equation(self,t,x):
 return np.array(0),np.array(0)

 def apply_states(self,x):
 y = 0

The classes defining other components of the system are derived from
this parent class. The first one to be defined is a generic Signal Source
class, which defines the component which provides a pre-defined signal
at each time step according a table of time x signal. The code of this class
is shown below:
from scipy import interpolate
class Source(Unit):
 def __init__(self,t_table,q_table,kind):
 Unit.__init__(self)
 self.q_table = interpolate.interp1d(t_table,q_table,kind)
 self.signal = 0.0

 def equation(self,t,x):
 y = self.q_table(t)
 return np.array(0),np.array(y)

 def setInlet(self,objup):
 self.Inlet = objup

 def setOutlet(self,objdown):
 y = self.q_table(0)
 self.setSignal(y)
 self.Outlet = objdown

 def setSignal(self,value):

General Applications in Scientific Problems 249

 self.signal = value

 def apply_states(self,x,y):
 self.setSignal(y)

This class defines three additional methods, setInlet(), setOutlet(
) and setSignal() methods. These type of functions are called setter
methods, for they are used to set an attribute without directly accessing
it. In Python is not possible to define private methods, so the user should
be aware which methods are to be directly accessed and which are to
be accessed using setter methods. In the case of the Inlet and Outlet
properties, it can be seen that some other procedures are performed when
the program attempts to update this property. If the property is directly
updated, such as in the following case:

Signal.Outlet = obj
May not generate directly any errors, but the program may not

perform as expected, since the procedures calculated using the setter
methods were bypassed. So, in the program flow it is important to, either
know which methods should be updated using a setter method, or do
not use setter methods at all (when possible), and a third option and the
most robust one is to use a setter method for all properties in a class, so
no confusion will exist if a property requires to be updated using a setter
method.

From this class, a FlowSource class is derived and the main difference
between the parent class and this subclass is an extra property, flow which
is equal to the signal generated. The code is the following:
class FlowSource(Source):
 def __init__(self,t_table,q_table,kind):
 Source.__init__(self,t_table,q_table,kind)
 self.flow = 0.0

 def setSignal(self,value):
 self.flow = value

This class, a child from the Source class, overrides the constructor
by calling the Source class constructor and adding a property, flow. The

Object-oriented Modelling for Scientific Computing250

setter method setSignal() is overriding to redefine the attribution of
values to the flow property, instead of the signal property, which is not
used in this case.

The third class is the Valve, which defines the behavior and
characteristics of the Valve objects present in the system. These valves
behaves according Bernoulli equation mentioned at the beginning of
the section. The opening of the valves is defined using a signal Source
obj. This is done so as to have more flexibility regarding the control and
manipulation of the opening of the valves. The Valve class is derived
from the generic Unit superclass, and defined in Python according the
following code:
class Valve(Unit):
 def __init__(self,ce,SignalSourceobj):
 Unit.__init__(self)
 self.ce = ce
 self.Pos = SignalSourceobj
 self.flow = 0

 def equation(self,t,x):
 ce = self.ce
 Pos = self.Pos.signal
 h = self.Inlet.Height
 y = Pos*ce*np.sqrt(h)
 return np.array(0),np.array(y)

 def setInlet(self,objup):
 ce = self.ce
 Pos = self.Pos.signal
 h = objup.Height
 y = Pos*ce*np.sqrt(h)
 self.Inlet = objup
 self.flow = y

General Applications in Scientific Problems 251

 def setOutlet(self,objdown):
 self.Outlet = objdown

 def apply_states(self,x,y):
 self.flow = y

The last main physical component of the system to be defined is
the Tank class, which defines the behavior and properties of the tank
instances that are present in the process. This class is also a subclass of
the Unit. The code for this type of component is shown below:
class Tank(Unit):
 def __init__(self,A,Height):
 Unit.__init__(self)
 self.A = A
 self.Height = Height

 def equation(self,t,x):
 A = self.A
 qi = self.Inlet.flow
 qout = self.Outlet.flow

 dx = (qi - qout)/A

 return np.array(dx),0

 def setInlet(self,objup):
 self.Inlet = objup

 def setOutlet(self,objdown):
 self.Outlet = objdown

Object-oriented Modelling for Scientific Computing252

 def apply_states(self,x,y):
 self.Height = x

This is the only class in this system which returns a derivative, instead
of an algebraic output of an equation or an interpolation. Therefore, the
time integration scheme has to be implemented so simulate this system,
according a defined timestep.

The last class, System, is used to join all the instances into a single
structure, connect them and to simulate the system using a predefined
time integration scheme. It is used as an initial approach the Forward
Euler time integration procedure, which is one of the simplest, however
it lacks stability, therefore being necessary to use small time steps of
simulation. This integration scheme is specially difficult to use for stiff
problems.

The class System defines three methods, besides the constructor:
• Add(). This method is used to collect the instances created

into a single structure (a Python dictionary in the present case).
• Connect(): This function is used to connect the instances, i.e

to set the Inlets and Outlets of the instances in the proper way
(if the outlet of obj1 is obj2, then the inlet of obj2 is obj1)

• Simulate(): This method is used to predict the system behavior
in a defined time horizon, using a time step for the integration
procedure. The user gives the time step and the amount of steps
of simulation, and the results are stored as class members.

The code written for this class is the following:
class System:
 def __init__(self):
 self.unit = dict()
 self.t = []
 self.x = []
 self.y = []

 def add(self,ID,obj):
 self.unit[ID] = obj

General Applications in Scientific Problems 253

 def connect(self,ID1,ID2):
 self.unit[ID1].setOutlet(self.unit[ID2])
 self.unit[ID2].setInlet(self.unit[ID1])

 def simulate(self,dt,N):
 unit = self.unit

 t = np.linspace(0.0,N*dt,N)

 numcolumns = len(unit)
 x = np.zeros([numcolumns,N])
 y = np.zeros([numcolumns,N])
 dx = np.zeros([numcolumns])
 yp = np.zeros([numcolumns])

 for i in range(N-1):
 k = 0
 for j in unit:
 dx[k],yp[k] = unit[j].equation(t[i],x[k,i])
 k = k + 1

 x[:,i+1] = x[:,i]+ dt*dx
 y[:,i+1] = yp

 k = 0
 for j in unit:
 unit[j].apply_states(x[k,i+1],y[k,i+1])
 k = k + 1

Object-oriented Modelling for Scientific Computing254

 self.t = t
 self.x = x
 self.y = y

The flow source table, valves signal table, as well as the geometries
of the tanks and the valves are defined according the following code in
Python:
tq = [0,100]
q_table = [10,10]

tp = [0,10,15]
pos0_table = [1,0.5,0.5]
pos1_table = [1,0.5,0.5]
pos2_table = [1,0.5,0.5]

A = [2,
 2,
 2]
ce = [5,
 4.5,
 4]

Where ‘t_q’ and ‘q_table’ are the table data of the flow source. The
‘tp’ is the time vector for the definitions of the valves signal sources
‘pos0_table’, ‘pos1_table’ and ‘pos2_table’. The ‘A’ vector defines the
cross-section area of the tanks. The vector ‘ce’ stores the values of the
discharge coefficient of the valves. To define the objects composing the
system, first it is necessary to create the signal sources, both flow and
valves signal.
valve0source = Source(tp, pos0_table, ‚zero‘)
valve1source = Source(tp, pos1_table, ‚zero‘)

General Applications in Scientific Problems 255

valve2source = Source(tp, pos2_table, ‚zero‘)
flowsource = FlowSource(tq, q_table, ‚linear‘)

The argument ‘zero’ is used to define that this type of signal should
be interpolated using zero-order hold, i.e the last input value is given
until a new one is presented, when the signal is updated. This type of
interpolation opposes with, for example, the linear one where the input
at the current time is a linear interpolation of the two values next to it.

Next, it is defined the tanks and the valves using the specified values
according the variables mentioned above. The code for these definitions
is shown below:
tank0 = Tank(A[0],0.0)
valve0 = Valve(ce[0],valve0source)

tank1 = Tank(A[1],0.0)
valve1 = Valve(ce[1],valve1source)

tank2 = Tank(A[2],0.0)
valve2 = Valve(ce[2],valve2source)

Finally, the connection of the whole system, including the connection
of the elements and running the simulation is done through the creation
of an instance of the System class. To create the System class, the
constructor is called without arguments, according the following line:
spreadsheet = System()

The following lines of code are used to insert all the created objects
into a single structured list (a Python dictionary).
spreadsheet.add(‘flowsource, flowsource)
spreadsheet.add(‘tank0, tank0)
spreadsheet.add(‘valve0source, valve0source)
spreadsheet.add(‘valve0, valve0)
spreadsheet.add(‘tank1’, tank1)
spreadsheet.add(‘valve1source’, valve1source)

Object-oriented Modelling for Scientific Computing256

spreadsheet.add(‘valve1’, valve1)
spreadsheet.add(‘tank2’, tank2)
spreadsheet.add(‘valve2source’, valve2source)
spreadsheet.add(‘valve2’, valve2)

Next the outlet and inlet of the element have to be connected according
the process structure using the connect() method of the spreadsheet
instance object. The following lines of code are used to connect the
instances.
spreadsheet.connect(‘flowsource’, ‘tank0’)
spreadsheet.connect(‘tank0’, ‘valve0’)
spreadsheet.connect(‘valve0’, ‘tank1’)
spreadsheet.connect(‘tank1’, ‘valve1’)
spreadsheet.connect(‘valve1’, ‘tank2’)
spreadsheet.connect(‘tank2’, ‘valve2’)

The simulation can be performed by calling the simulate() method
of the spreadsheet instance object, with the timestep and the number of
steps as input arguments to the function, as shown in the following code:
N = 150
dt = 0.1
spreadsheet.simulate(dt,N)

x = spreadsheet.x
y = spreadsheet.y
t = spreadsheet.t

One major advantage of the object-oriented programming is shown
in the following case, where the whole system is rearranged in a new
configuration.

Advantages of the object-oriented programming –
rearranging the Tank system
In this section, the same program used before is used and expanded in
order to model a new system of Tanks, according the following figure:

General Applications in Scientific Problems 257

Figure 11: Rearranged Tank system.

In this new configuration, a new source is added, and the sum of the
contributions of the first two tanks flow to the third tank. The sum of the
contributions can be done by adding a new class to the System, which is
called Joint. The code of the new class is shown below:
class Joint(Unit):
 def __init__(self):
 Unit.__init__(self)
 self.flow = 0.0

 def equation(self,t,x):
 y = 0
 for i in self.Inlet:
 y = y + i.flow
 self.flow = y
 return np.array(0),np.array(y)

 def setInlet(self,objup):
 self.Inlet.append(objup)

Object-oriented Modelling for Scientific Computing258

 y = 0
 for i in self.Inlet:
 y = y + i.flow
 self.flow = y

 def setOutlet(self,objdown):
 self.Outlet = objdown

 def apply_states(self,x,y):
 self.flow = y

The advantage of the object-oriented approach is that no modifications
on the previously developed objects are to be performed. An instance of
the Joint class has to be created and connections are changed in such a
way that it reflects the new system under interest. The creation of this
instance is done according the following code:
joint = Joint()

Which defines the object ‘joint’. Additionally, there is an extra flow
source which feeds the Tank 2. The definition of this object is done
according the following code:
flowsource1 = FlowSource(tq,q_table,’linear’)

The spreadsheet object is redefined according the code below:
spreadsheet = System()
spreadsheet.add(‘flowsource0’,flowsource0)
spreadsheet.add(‘flowsource1’,flowsource1)
spreadsheet.add(‘tank0’,tank0)
spreadsheet.add(‘valve0source’,valve0source)
spreadsheet.add(‘joint’,joint)
spreadsheet.add(‘valve0’,valve0)
spreadsheet.add(‘tank1’,tank1)
spreadsheet.add(‘valve1source’,valve1source)
spreadsheet.add(‘valve1’,valve1)

General Applications in Scientific Problems 259

spreadsheet.add(‘tank2’,tank2)
spreadsheet.add(‘valve2source’,valve2source)
spreadsheet.add(‘valve2’,valve2)

spreadsheet.connect(‘flowsource0’,’tank0’)
spreadsheet.connect(‘flowsource1’,’tank1’)
spreadsheet.connect(‘tank0’,’valve0’)
spreadsheet.connect(‘valve0’,’joint’)
spreadsheet.connect(‘tank1’,’valve1’)
spreadsheet.connect(‘valve1’,’joint’)
spreadsheet.connect(‘joint’,’tank2’)
spreadsheet.connect(‘tank2’,’valve2’)

The rest of the code remains the same. New configurations of the
system can be tested without deep modification of the code. The object-
oriented approach allows the definition of different process flowsheets by
reusing the same classes, rearranged according the necessity. This same
procedure would not be possible using the functional programming,
where the main function needs to be rewritten in order to reflect the new
conditions under study.

FURTHER READING
In this section, we present some useful literature for those interested in
extending their knowledge in Scientific Computing, Object-Oriented
programming and the application of Object-Oriented programming in
Scientific Computing.
Gladwell, I; Nagy, J. G; Ferguson Jr., W. E. (2007) Introduction to
Scientific Computing. Available in: http://www.mathcs.emory.edu/~ale/
NAbook_Aug_2008.pdf
This book provides principles on scientific computing, with many
examples on basic mathematical algorithms on solving linear systems,
differentiation, integration and other methods. Application of such
methods using Matlab is done all over the book, providing the reader
clear insight without requiring high expertise with Numerical Methods.

Object-oriented Modelling for Scientific Computing260

Bindel, D; Goodman, J. (2009) Principles of Scientific Computing.
Available in: http://www.cs.nyu.edu/courses/spring09/G22.2112-001/
book/book.pdf
This book covers numerical methods used in scientific computing
in a broad sense, from analysing sources of errors in computation,
linear algebra methods and algorithms up to nonlinear equations and
optimization, dynamics and differential equations finishing with Monte
Carlo method applications. Each chapter provides exercises so the reader
can take deep insight into every concept presented.
Heath, M. T. (2002) Scientific Computing: an introductory survey. 2nd ed.
McGraw Hill.
Besides covering numerical methods used in scientific computing,
softwares that can be used are presented by the author, with historical
description and further reading on each topic along the book. Three
chapters are dedicated to numerical methods used in solving differential
problems: the first one describes initial value problems, the second one
boundary value problems and the last one the use of numerical methods
for solving partial differential equations.
Johansson, R. (2016) Introduction to Scientific Computing in Python.
Available online.
The author presents, in a very simple and useful manner the way Python
as a programming language can be used to solve problems in numerical
computation. The first chapter introduces Python from the very beginning,
showing what is it, its features and how to obtain. Further chapters
present different libraries in Python useful for Scientific Computing such
as Scipy, Numpy and Sympy. The author also explain how Python can
be integrated with other programming languages (C and Fortran) , tools
for high-performance computing and how to control software versions.
Pitt-Francis, J; Whiteley, J. (2012) Guide to Scientific Computing in C++.
Springer-Editor London. ISBN: 978-1-4471-2736-9. DOI: 10.1007/978-
1-4471-2736-9
The authors present essential principles on using object-oriented C++
programming for scientific computing. Many examples are given to
support the theory described and to help the reader to familiarize himself
with the concepts presented. Special features of the language are also
described, such as parallel computing using MPI. A brief introduction

General Applications in Scientific Problems 261

to the language is first presented, and later more advanced features are
examined, such as templates and exceptions.
Yang, D. (2001) C++ and Object-Oriented Numeric Computing for
Scientists and Engineers. Springer New York. DOI: 10.1007/978-1-
4613-0189-9. ISBN: 978-1-4613-0189-9
Basic concepts of C++ programming language, and object oriented
numeric computation for students and professionals are described in
this easy to read and complete book. Examples are shown independent
of the operating system. At the end, special features not present in
other languages used for scientific computing are presented, such as
the preconditioned conjugate gradient (CG) method and generalized
minimum residual (GMRES) method.
Henderson M. E; Anderson C. R; Lyons S. L. (1999) Object Oriented
Methods for Interoperable Scientific and Engineering Computing
(Proceedings in Applied Mathermatics, 99). Society for Industrial &
Applied Mathematics,U.S. (29. September 1999)
The book is a compilation of the papers presented at the October
1998 SIAM Workshop on Object Oriented Methods for Interoperable
Scientific. It covers different topics and problems related with designing
and implementing computational tools for science and engineering.
Langtangen, H. P. (2016) A Primer of Scientific Computing with Python.
Springer Berlin Heidelberg. ISBN: 978-3-662-49887-3
The book covers basic principles of Python programming language, and
advanced features with many applications in scientific computing and
numerical methods. Some examples are shown from the perspective
of first, functional approach up to a full object-oriented programming
approach. The language is concise, easy to understand and provides the
necessary information to develop good knowledge with Python language.
Kiusalaas, J. (2013) Numerical methods in engineering with Python 3.
Cambridge University Press. New York.
The main focus of the book is to teach numerical methods. Nonetheless,
applications in Python shows how to use existent tools to solve most of
the common problems present in engineering applications.
Fritzson, P. (2004) Principles of Object Oriented Modeling and Simulation
with Modelica 2.1 Wiley-IEEE Press, 2004.

Object-oriented Modelling for Scientific Computing262

Modelica is a high-level language developed specifically to solve
mathematical problems represented through models. The book above
describes from the first principles up to advanced features how Modelica
and its object-oriented features can be used to solve problems in biology,
physics, mathematics and engineering using simple but precise tools
present in this special language.

1. Gall J. 1986. Systemantics: How systems really work and how they
fail. Second Edition. Ann Arbor, MI: The General Systemantics
Press.

2. Booch, G. Maksimchuk, R. A. Engle, M. W. Young, B. J. Conallen,
J. Houston, K. A. 2007. Object-Oriented Analysis and Design with
Applications Third Edition. Addison-Wesley.

3. Firesmith, D. G. (1993). Object-oriented requirements analysis and
logical design: a software engineering approach. New York: Wiley.

4. Yourdon, E. (1994). Object-oriented systems design: an integrated
approach. Englewood Cliffs, NJ: Yourdon Press.

5. Booch, G. (1996). Managing object-oriented software development.
Annals of Software Engineering, 2(1), 237-258.

6. Thapa, R. S. Project Development & Management: The Object
Oriented Approach.

7. Bindel, D; Goodman, J. (2009) Principles of Scientific Computing.
8. Heath, M. T. (2013) Scientific Computing – An Introductory Survey.

2nd edition. McGraw Hill.

REFERENCES

Object-oriented modelling for Scientific Computing264

9. Gladwell, I; Nagy, J. G; Ferguson Jr., W. E. F. (2007) Introduction
to Scientific Computing. Available in: http://www.mathcs.emory.
edu/~ale/NAbook_Aug_2008.pdf.

10. Laurie Williams (2004) An Introduction to the Unified Modeling
Language. Available in: http://agile.csc.ncsu.edu/SEMaterials/
UMLOverview.pdf

11. Lucid Chart. UML Tutorial. Available in: https://www.lucidchart.
com/pages/what-is-UML-unified-modeling-language .

12. Ostermann, S., Prodan, R., & Fahringer, T. (2009, October).
Extending grids with cloud resource management for scientific
computing. In Grid Computing, 2009 10th IEEE/ACM International
Conference on (pp. 42-49). IEEE.

13. Perez, R. E., Jansen, P. W., & Martins, J. R. (2012). pyOpt: a
Python-based object-oriented framework for nonlinear constrained
optimization. Structural and Multidisciplinary Optimization, 45(1),
101-118.

14. Qin, J. Fahringer, T. UML-Based Scientific Workflow Modeling. IN:
Scientific Workflows - Programming, Optimization, and Synthesis
with ASKALON and AWDL. pp 75-89.

15. Selic, B. (2007, May). A systematic approach to domain-specific
language design using UML. In Object and Component-Oriented
Real-Time Distributed Computing, 2007. ISORC’07. 10th IEEE
International Symposium on (pp. 2-9). IEEE.

16. Tutorials Point. Learn UML – Unified Modelling Language.
Available in: https://www.tutorialspoint.com/uml/index.htm .

17. Claudio Ferrari, Maurizio Bonafede, Maria Elina Belardinelli,
LibHalfSpace: A C++ object-oriented library to study deformation
and stress in elastic half-spaces, Computers & Geosciences,
Volume 96, 2016, Pages 136-146, ISSN 0098-3004, http://dx.doi.
org/10.1016/j.cageo.2016.08.011.

18. (h t t p : / / w w w. s c i e n c e d i r e c t . c o m / s c i e n c e / a r t i c l e / p i i /
S0098300416302618)

19. Dubois-Pelerin, Yves, and Thomas Zimmermann. “Object-oriented
finite element programming: III. An efficient implementation in
C++.” Computer methods in applied mechanics and engineering

References 265

108.1 (1993): 165-183.
20. Francis, J. P. Whiteley, J. (2012)Guide to scientific computing with

C++. Undergraduate Topics in Computer science. Springer
21. Jasak, Hrvoje, Henry G. Weller, and Niklas Nordin. In-cylinder

CFD simulation using a C++ object-oriented toolkit. No. 2004-01-
0110. SAE Technical Paper, 2004.

22. Kale, Laxmikant V., and Sanjeev Krishnan. “CHARM++: a portable
concurrent object oriented system based on C++.” ACM Sigplan
Notices. Vol. 28. No. 10. ACM, 1993.

23. Mangani, L., et al. “Development and validation of a C++ object
oriented CFD code for heat transfer analysis.” ASME Summer Heat
Transfer (2007).

24. Vukics, A., and H. Ritsch. “C++ QED: an object-oriented framework
for wave-function simulations of cavity QED systems.” European
Physical Journal D--Atoms, Molecules, Clusters & Optical Physics
44.3 (2007).

25. MathWorks (2017). Object-Oriented Programming. Natick.
26. Boisvert, R. F., Moreira, J., Philippsen, M., & Pozo, R. (2001). Java

and numerical computing. Computing in Science & Engineering,
3(2), 18-24.

27. Robert Sedgewick and Kevin Wayne. 2007. Introduction to
Programming in Java: An Interdisciplinary Approach (1st ed.).
Addison-Wesley Publishing Company, , USA.

28. IDR Solutions. The top 11 Free IDE for Java Coding, Development &
Programming. Available in: https://blog.idrsolutions.com/2015/03/
the-top-11-free-ide-for-java-coding-development-programming/.

29. Tutorials Point. Learn Java Programming – Java basics. Available
in: https://www.tutorialspoint.com/java .

30. Adams, P. D., Grosse-Kunstleve, R. W., Hung, L. W., Ioerger, T.
R., McCoy, A. J., Moriarty, N. W., & Terwilliger, T. C. (2002).
PHENIX: building new software for automated crystallographic
structure determination. Acta Crystallographica Section D:
Biological Crystallography, 58(11), 1948-1954.

31. The Python Guru. Python Tutorial. Available in: http://thepythonguru.
com/wp-content/uploads/2016/03/thepythonguru.pdf

Object-oriented modelling for Scientific Computing266

32. Langtangen, H. P. (2016). A primer on scientific programming with
Python. Heidelberg: Springer.

33. Leaver-Fay, A., Tyka, M., Lewis, S. M., Lange, O. F., Thompson, J.,
Jacak, R., ... & Davis, I. W. (2011). ROSETTA3: an object-oriented
software suite for the simulation and design of macromolecules.
Methods in enzymology, 487, 545.

34. Matplotlib documentation. Available in: https://matplotlib.org/
35. Peirce, J. W. (2007). PsychoPy—psychophysics software in Python.

Journal of neuroscience methods, 162(1), 8-13.
36. Sayama, H. (2015). Introduction to the Modeling and Analysis of

Complex Systems. SUNY Binghamton. ISBN 978-1-942341-09-3
37. Sukumaran, J., & Holder, M. T. (2010). DendroPy: a Python library

for phylogenetic computing. Bioinformatics, 26(12), 1569-1571.
38. Bahn, S. R., & Jacobsen, K. W. (2002). An object-oriented scripting

interface to a legacy electronic structure code. Computing in Science
& Engineering, 4(3), 56-66.

INDEX

A

abstract model consisting 43
ALGOL 1, 2, 4
already mentioned 23
Animal 225, 226, 229
approximation gets 26
ASKALON Workflow Hosting

Environment (AWHE) 54

C

Class diagrams 41
COBOL 2, 4
Collaboration diagram 40, 48
complicated 50, 94, 114, 162
cook rice 50
Cramer’s rule 21

D

DAncona 220
deployment diagram 53
design phase 41
development process 27, 32
different parameters 218, 230
Directory Services Markup Lan-

guage 54

E

earlier languages 4
estimation and curve fitting 26

F

first different assumptions 24
FORTRAN 1, 2, 4

Object-oriented modelling for Scientific Computing268

function call 76
fundamental problem 19

H

high-level commercial softwares
31

I

Incremental Model 27
infinite-dimensional 18

L

language 31, 32, 33, 35, 39, 54,
55, 56, 82, 84, 93, 123, 124,
131, 136, 164, 168, 173,
174, 196, 197, 198, 199

M

machine language. 31
mental extrapolation 223
Modelica 197, 198, 199, 200,

202, 203, 204, 205
modularity 215

O

Object diagrams 43
Object Management Group

(OMG) 34
Object Oriented Model 27
object-oriented software develop-

ment organization 29

P

Package. 37
programmers 1, 4
programming languages 1, 2, 3,

4, 5, 9
Project Management 27

R

RAD Model 27
Random Access Memory (RAM)

31

S

simulation softwares 211
source code 32, 33, 57, 58
Spiral Model 27

T

target code 32, 33
transistors 3

U

Unified Modeling Language
(UML) 28

Unified Modelling Language
(UML) 34

V

Volterra equations. 219

W

Waterfall Model 27

	Cover
	Title Page
	Copyright
	About the Authors
	Contents
	List of Abbreviations
	List of Figures
	List of Tables
	Preface
	Section 1 Concepts on Object-Oriented Programming
	• Introduction
	• Principles and Terminology

	Section 2 Scientific Computing principles
	• Introduction to Scientific Computing
	• Common Mathematical Problems

	Section 3 Object-Oriented Development and Programming
	• Object-Oriented Project
	• Introduction to Programming
	• Unified Modelling Language
	• C++
	• Matlab
	• Java
	• Python
	• Modelica

	Section 4 General Applications in Scientific Problems
	• An Object-Oriented Approach for Function Differentiation in Python
	• Development of a Simple Object Oriented Simulator of Dynamical Systems
	• Using the Openmdao for Model Development and Simulation
	• Tank System Modelling
	• Further Reading

	References
	Index
	Back Cover

