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The main audience of this book are mathematics, biology, physics and engineering 
students interested in acquiring more knowledge in scientific computing by using 
object-oriented programming (OOP). 
OOP is present in many different programming languages. However, not all of them can 
be easily used in scientific computing. Therefore, in this book we show the application 
of OOP technique using C++, Java, Python and Matlab. These languages stand among 
the most popular ones to solve scientific problems, especially the numerical ones.
The whole book is divided into 4 main sections.
Section 1 gives a brief description of the basic concepts of OOP, terminology and the 
history of its development. The second section introduces scientific computing and 
some simple algorithms in numerical methods are presented, which lies among the 
most common types of problems that the scientist may face.
Section 3 encompasses the major part of the book and contains the practical techniques 
for the development of object-oriented software solutions. The first tool presented 
is the Unified Modelling Language (UML), which is not a programming language, 
but a tool to develop the concepts in software, documenting it and making easier the 
implementation of necessary algorithms and methods, to satisfy the main objectives of 
the software.
The second tool presented is the C++ programming language. In the chapter a 
introduction to the basic features of the language is given, and an introduction to the 
object-oriented features of it. The same guideline is followed for Matlab, Java, Python 
and Modelica.
The Section 4 shows practical applications of scientific computing using object-
oriented approach to solve problems. Specifically, it is presented the application of 
this technique to model the famous Predator-Prey model, or Lotka-Volterra model, 
which represents the relationship between a prey and its predator in a system under 
certain constraints. The second application is the description of the OpenMDAO tool 
for modelling and analysis of mathematical problems. The last application consists into 
modelling a system of tanks, starting from a functional programming and upgrading it 
until it reaches an object-oriented approach.
Finally, it provides some suggestions of further reading. After, the references used along 
the book are presented. 

Author
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INTRODUCTION

The history behind the object-oriented programming
The evolution of programming languages can be backtracked to the 
middle 50’s, when it started to be developed the so called first-generation 
languages. Some of which can be mentioned:

• FORTRAN I
• ALGOL 58
• Flowmatic
• IPV V
These first programming languages were used primarily for scientific 

and engineering computing. Because of that, the syntax and vocabulary of 
the languages are almost only mathematical expressions, thus providing 
already an advantage for programmers from these epoch, freeing them 
from the intricacies of assembly or machine language.

CONCEPTS ON  
OBJECT-ORIENTED 
PROGRAMMING

1
SECTION
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Figure 1: Topology of first-generation programming languages.

The second-generation languages dates from the years 1959-1961, 
and their focus were on algorithm abstraction. Some that may be 
mentioned are:

• FORTRAN II
• ALGOL 60
• COBOL
• Lisp
FORTRAN II shift the focus from mathematical expressions to 

incorporating subroutines, and to have a separate compilation.  ALGOL 
60 introduced programming with block structures and different data 
types. COBOL brought the feature of data description and file handling. 
Lisp had as special features the capabilities of list processing, pointers 
and garbage collection.

As an example, to calculate the area of a triangle using FORTRAN II, 
the following program can be used:

C AREA OF A TRIANGLE - HERON’S FORMULA
C INPUT - CARD READER UNIT 5, INTEGER INPUT
C OUTPUT - LINE PRINTER UNIT 6, REAL OUTPUT
C INPUT ERROR DISPLAY ERROR OUTPUT CODE 1 IN JOB 

CONTROL LISTING
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      INTEGER Q,W,E
      READ(5,501) Q,W,E
  501 FORMAT(3I5)
      IF(Q.EQ.0 .OR. W.EQ.0 .OR. E.EQ.0) STOP 1
      S = (Q + W + E) / 2.0
      AREA = SQRT( S * (S - Q) * (S - W) * (S - E) )
      WRITE(6,601) Q,W,E,AREA
  601 FORMAT(4H Q= ,I5,5H  W= ,I5,5H  E= ,I5,8H  AREA= ,F10.2,
     $13H SQUARE UNITS)
      STOP
      END

Which is, although simple, not very easy to understand. The important 
point is that, the computer at that time had a special boost in performance, 
and the economics of computer industry meant that the solutions of more 
problems could be addressed using these available resources. That was 
especially true for the business applications.

The focus shifted from the use of programs to solve mathematical 
problems, to telling the computer what to do. As instance: read a file, 
write one line, close the file, show a report.

Figure 2: Topology of second-generation programming languages.

The introduction of transistors as a brand new technology, as well as 
the integrated circuit made the prices of computers to drop significantly, 
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while the processing capacity grown almost exponentially. With these 
factor, by the middle to the late 60’s, a third generation of programming 
languages rise, allowing data abstraction. Some examples of these new 
languages are:

• PL/I
• ALGOL 68
• Pascal
• Simula
PL/I was a mixture of FORTRAN, ALGOL and COBOL, incorporating 

the features of each of them in a single language. Simula was the first one 
to bring the concept of classes and data abstraction. 

Figure 3: Topology of third-generation programming languages.

The size and complexity of programs started to become bigger 
and bigger, revealing the inadequacies of earlier languages. At this 
time programmers started to see that an object-oriented approach of 
programming could deal much easier with highly complex systems, by 
partitioning them in smaller parts. Some languages that worth mentioning 
are:

• Smalltalk 80
• C++
• Ada83
Smalltalk 80 was one of the first pure object-oriented programming 

languages. Nevertheless, others also incorporated that feature, such as 



Concepts on Object-Oriented Programming 5

C++ and Ada83. The boom on developments at this direction dates from 
1980-1990, and it drastically increased the productivity and the ability of 
component reuse.

From this time on, a diversity of languages were developed with 
focus on object-oriented programming, and that`s our focus on this book.

Figure 4: Topology of object-oriented and object-based programming languag-
es

Outlook on Complexity of Systems
Is it possible to say that a system is, in its essence, simple? That is a very 
strict affirmative, for even a single cell, or the smallest amount of sand 
possess an enormous quantity of atoms, protons, neutrons, electrons, not 
to mention elements of even smaller sizes and consequently with greater 
quantity.

Nonetheless, the way that a system is seen by different users, or 
observers, and the features of that system which are important to them, 
may make it possible to see a system in a very simple way. For example, 
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a cat in the eyes of a child may be simply a pet, which one can input some 
feed, and one can play with it. On the other hand, the same cat in the eyes 
of a veterinary surgeon is seen in a very different manner. The surgeon 
has noted that the cat suffers from kidney stones, and a surgery may be 
necessary, which involves knowing how the cat’s heart will support the 
surgery, as well as if some other organs may need to be taken special care 
during the surgery.

Or just imagine a “simple” water tank. In the eyes of an amateur 
swimmer, it is important to have enough width or length so he can 
practice the sport, and also enough height so one can also dive. A strict 
value for those are not well defined, but depends also on the size and 
the abilities of the swimmer. On the other hand, in the eyes of a process 
engineer, he may have planned to use the same tank in a polymerization 
process. It is important that the water tank can be closed on the top, so it 
can admit some pressure. It is also important to rightly locate the input 
and output pipes, so after the polymerization process, the product can 
be safely removed to the full and new material can be admitted. Besides 
that, it is necessary to choose the right mixing paddle to the dimensions 
of the tank, which have to be well known, not only because of that but 
also to know the residence time of the material. And that is just a brief 
summary…

Swimmer Engineer

It is large 
enough for 

me to 
swim!

This tank is X 
meters high, Y 

meters long and 
Z meters deep. 

The particle 
residence time is 
T minutes. I can 

use it!

Figure 5: The complexity of a system depends on the observer intention.

This illustrates that, for different users with different intentions, a 
system can be interpreted in a simple, or in a complex way.
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Characteristics of a Complex System
Systems have different levels of complexity. Nevertheless, Booch et al. 
(2007) mention five attributes that are common to all complex systems:

Hierarchic Structure
It is logical to think that a big, complex system can be decomposed in 
smaller, simpler parts. Interpreting each of these parts as a component 
itself helps one to understand the big picture.

For instance, the water tank mentioned above can be divided in 
simpler, smaller components as shown below:

Water tank

Water
Tank

H2O H2O H2O

Molecules

H O

Atoms

Bottom Lateral

Figure 6: Hierarchic Relationship of a complex system.

One can realize that every system can be decomposed in simpler 
subsystems, and every system is part of a larger system, whereas the 
behavior of systems depends on it parts and the relationship among them.

Relative Primitives
Down to what component a complex system can be seen? The choice of 
the primitive components of a system depends on the observer or user 
and it is highly arbitrary.
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For the water tank above, a swimmer may only be interested in 
knowing the size of the tank and the water temperature, so he can practice 
some sport. On the other side, a chemist who wants to use the water tank 
to do some experiments may want to know what components are inside 
the water, as well as if the material that forms the tank will react with the 
product he wants to test. This can go to the level of molecules and ions, 
their concentration and interaction. Another person may just want to use 
the water tank to have drinkable water, so the material or dimensions of 
the water tank are useless and just the volume of water and the substances 
mixed with it are important for him.

Separation of Concerns
A system’s dynamics is defined by its inter- and intracomponent linkage. 
The latter is assumed to be much more stronger than the first, what makes 
it possible for an observer to analyze a system, with a clear definition 
of how to separate its parts. The interaction inside the components are 
called high frequency dynamics, and they involve the structure of the 
component, while the interaction between components is referred to as 
low-frequency dynamics.

Common Patterns
A complex system is not formed only by a variety of different subsystems. 
Rather, it is composed of patterns, or subsystems which are of the same 
kind, but they are arranged in a variety of combinations and arrangements. 
For instance, the water in the tank above is composed of molecules that 
have 2 atoms of hydrogen for 1 atom of oxygen. These patterns are 
repeated billions of billions of billions of times until the whole volume of 
water is formed. Of course, the water may also be contaminated by other 
substances, but even those are formed by patterns of the same atoms, 
which are all formed by protons, neutrons, electrons, etc.

Stable Intermediate Forms
Complex systems change over time. Nonetheless, these changes can be 
much easier understand if the system can be seen in stable intermediate 
forms. According Gall. (1986), working complex systems must have 
evolved from a simpler system that also works. A complex system 
designed from scratch is bound to fail.
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As such systems evolve, complex components become primitive of 
even more complex systems, as in biological systems, which are formed 
by cells, highly complex systems.

PRINCIPLES AND TERMINOLOGY

Definition of Class and Object
The words object and class are broadly used in programming area, and 
vendors of database, CASE tools and programming languages tend to use 
it as a term to attract clients. Many of these does not really knows what 
the word OO (object-oriented) means.

According Yourdon (1994), a system built with object-oriented 
methods is one whose components are encapsulated chunks of data 
and function, which can inherit attributes and behavior from other such 
components, and whose components communicate via messages with 
one another.

Regarding Classes, they can be defined as a template, some code 
which is used as a basis to create objects, providing initial values of 
states, default components common to the derived objects, and defining 
the behavior of the derived objects. 

The objects are basically things, which behaves according the 
instructions of the class that it belongs. For instance, a dog is an “object”, 
or instance of a class Mammals. The same apply to cats, horses, whales 
and so on. By this example, one can see that there are levels of abstraction 
regarding classes and objects. The objects pertaining to a certain class 
may have different behavior because they actually are directly derived 
from subclasses of the main class.

Firesmith (1993) defines object as a software abstraction that models 
all relevant aspects of a single tangible or conceptual entity or think from 
the application domain or solution space. An object is one, or the primary 
software entities in an object oriented application, typically corresponds 
to a software module, and consists of a set of related attribute types, 
messages, exceptions, operations and optional component objects.

The object-oriented programming emanates from the programming 
language Simula, which was a tool developed to simulate processes of the 
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real word. In this sense, the objects in Simula really were representations 
of real things in the world. 

Nevertheless, it was only when the programming language Smalltalk 
was introduced, that the term object-oriented programming came forth. 
The whole language was building around the concept of classes and 
objects, as the authors were fascinated by this technique. The Smalltalk 
language considers everything an object, from one number to a very 
complex system. In essence, it sees an object as something which can 
have some states, and which can perform some actions. In summary:

Object = state + behavior

Definition of Abstraction
The abstraction concept derives from the necessity of interpreting a 
complex system in a simpler way, by neglecting dynamics or characteristics 
which are not predominant in the system. Virtually, any piece of software 
incorporates some level of abstraction, because the programmer hides all 
but the relevant data to define the object, reducing thus the complexity of 
the system and increasing efficiency.

Abstraction can be applied with two different focuses:
• Control abstraction
• Data abstraction
The first (Control abstraction) refers to the interpretation of the actions 

in a meaningful and simple manner, incorporating important actions and 
neglecting those who has little or no effect in the system being modelled.

The second (Data abstraction) refers to way data is structured, so 
each data has its own type according the programmer necessity. As an 
example, a list can be seen as an abstraction of a sequence of items, 
indexed by their position.

As a general example, consider the following model of a car:
#-----------------------------------------------------------------------
Model Car
 Properties
  Integer wheels = 4;
  Integer seats = 2;
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End Car;
#-----------------------------------------------------------------------

What the above model describes about the car? Even someone without 
knowledge about programming can see that the car model has two 
specifications: wheels (an integer, i.e 1,2,3,…) specified as four and seats, 
also an integer, specified as one. But what is the color of the car? What is 
the horse-power? The model does not say, because the programmer has 
decided that, for the system under analysis, it only important to know the 
number of wheels of the car and the number of seats on it. This shows 
how abstraction concept can be used to simplify a system up to the level 
which is desired according the problem under analysis.

We can also provide one example of an abstraction of a dynamic 
model. Consider also a model of a car, but of the following format:
#-----------------------------------------------------------------------
Model Car
 Properties
  Float position
 Methods
  Function drive_car (time = 10.0, velocity = 1.0 )
   position = position + velocity * time;
  End drive_car
End Car;
#-----------------------------------------------------------------------

In this case, the class car has one single attribute: the position of it. 
But a function, or action was incorporated, the drive_car function, which 
is used to change the position of the car, by inputting the time of driving, 
as well as the average velocity of the car. The new position is calculated 
with the simple equation for uniform movement:
s = s0 + v0 * t
Where:
s – final position
s0 – initial position
v0 – average velocity
t – time
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As in the previous case, one does know what is the model of the 
car, the color, how big it is. That is because these characteristics are not 
relevant, according the programmer criteria, to represent the system 
under interest.

Definition of Encapsulation
An encapsulated information is something that is not clearly seen in 
the implementation of the object. It is somewhere hidden , so the other 
components of the system are not aware of it, or can not use it unless it is 
specified so. In the practical sense, it means that the properties, methods 
and any other characteristic of the object are packaged together.

This is a huge advantage in object-oriented modelling, for the 
programmer can control which piece of information in an object will 
communicate with which piece of other object. This is usually done in 
the form of sent messages that are sent to specified methods or function 
of the receiving object.

As an example, imagine a car model. As driver gives as input if the 
car is on or off, the Steering wheel angle, the accelerator, the brake and 
the car gear. So a simple representation of this model would be:
#-----------------------------------------------------------------------
Model Car
 Properties
  Boolean engine
  Float Steer_wheel_angle
  Float accelerator
  Float brake
  Float gear
 Methods
  Function turn_on
  Function turn_off
  Function car_drive
End Car;
#-----------------------------------------------------------------------

When the driver turns the car engine on (by setting the Boolean 
engine to TRUE), then the function turn_on calls another model which 
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is the start_engine model. The start_engine model represents just, as the 
name reveals, the start engine motor, which is responsible of admitting 
fuel and air into the motor and compressing it. A simple representation of 
this model can be stated as:
#-----------------------------------------------------------------------
Model Start_Engine
 Properties
  Boolean turn_on
 Methods
  Function admit_air
  Function admit_fuel
  Function compress
End Car;
#-----------------------------------------------------------------------

This model has a single property, turn_on (TRUE or FALSE), which 
is called by the turn_on function of the car, in order to run its functions, 
which are to admit air into the motor, admit the fuel and compress it, and 
after combustion the motor can work by itself, and the start_engine can 
be turned off.

Once the motor has started, it is time to accelerate so the car can 
move. This is done by the function car_drive in the car model, which 
may call other objects such as engine, differential, wheels, and so on. An 
encapsulated, object-oriented representation of this car model would be:

class Car
--------------------------------------

turn_on
turn_off
car_drive

class Wheel
class Wheel

class Wheelclass Wheel

Class Motor

Class 
Start_Engine

Class 
Transmission

Class Brake

Figure 7: Example of Encapsulation – Car model
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Each different object is not aware of what the other one is doing, but 
they receive or send tasks according the definitions on its structure.

Definition of Inheritance
Inheritance is the principle that an object incorporates all or part of the 
definition of another class, usually referred to as superclass or parent-
class. This creates a hierarchy of structures, where some objects inherits 
from one superclass while other are derived from another class, and so 
on.  The classes in this hierarchy are referred to as generalized/specialized 
structures. That is because, as we search for common characteristics 
of different objects, we arrive at some moment in a concept which is 
common to a variety of objects of interest.

These generalized, common objects can also produce derived objects 
by combination, which defines a multiple inheritance. For instance, a 
class Daisy can be defined as a plant, as well as a Flower, depending 
on the intention of the user. To define this class, one can use multiple 
inheritance concept.

Flower Plant

Daisy

Figure 8: The Daisy Class as an example of Multiple Inheritance.

On the other hand, on single superclass can also generate multiple 
subclasses. For example, consider the different types of car: convertible 
car, mini SUV, urban car, sport car. All of this type of cars can be a 
class derived from a superclass Car, which describes the basic features 
common to all of these models, such as the fact of having 4 wheels, one 
steering wheel, and so on.
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Car

Sport 
Car

SUV
Urban 

car

Figure 9: The Car Superclass as an example of Multiple Subclasses.

This concept makes it easier when programming, for it avoids the 
repetition of code already written. It also makes easier to analyze a 
system, for its is know what is common to each of objects on it, and what 
is different, by relating to their hierarchy





INTRODUCTION TO SCIENTIFIC  
COMPUTING

Scientific computing is a tool used to solve a variety of problems in 
science and engineering fields. The basis of this process comes from a 
knowledge over the phenomenon under study, known as model. Knowing 
how the phenomenon behaves (model) and how to develop an algorithm 
able to do predictions of the phenomenon is the basis of the scientific 
computing.

According Bindel and Goodman (2009), the challenge of scientific 
computing draws of mathematics and computer science, being necessary 
discipline and practice in order to overcome them. The same problem 
can be solved using different algorithms and the testing of such involves 
breaking it procedure by procedure. Accuracy, stability, robustness 
and performance are some of the factors considered when developing 
algorithms and programs.

There are nowadays a variety of tools available for developing such 
algorithms. Programming environment and debuggers, visualization, 

SCIENTIFIC COMPUTING 
PRINCIPLES2

SECTION
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profiling, pre-compiled libraries are some of these which helps one to 
create high-quality software solutions.

One important feature regarding scientific computing is that, in most 
problems involving continuous mathematics, as in derivatives, integrals 
or nonlinearities, the solution of a problem will not be exact using a 
finite number of steps. Therefore, an iterative process is required, which 
will converge to a solution with reasonable accuracy, depending on the 
admissible error. According Heath (2013), the challenge is to find rapidly 
convergent iterative algorithms, which will produce accurate resulting 
approximations. In some cases, the iterative algorithm may be so fast 
that it may even be preferable over analytical methods for linear systems 
which will require more computational resources.

The solution procedure using scientific computing usually involves 
the following steps:

• Development of a mathematical model of the system under 
investigation

• Development of the algorithms necessary to solve the problem 
numerically

• Implementation of the algorithm in a computer software, or 
development of a computer software to solve the problem

• Run the simulation
• Store the results of the simulation
• Represent such results in a way they can be analyzed and 

validated
• If the validation fails, repeat all or some of the steps above 

until the validation succeeds
Computational resources are not infinite, so the seeking of a solution 

to a mathematical problem usually involves fitting this problem to the 
availability of resources. This means simplifying a problem, translating 
a difficult and complicated system into a simpler one which provides the 
same solution, or a closely related one. According Heath (2013), some 
procedures for simplifying mathematical problems involve:

• Replacement of infinite-dimensional spaces into finite-
dimensional spaces



Scientific Computing Principles 19

• Replacement of continuous terms with discrete ones, such as 
the replacement of integrals, derivatives by finite sums and 
finite differences.

• Replace differential equations with algebraic equations
• Replace non-linear problems with linear ones
• Replace high-order systems with low-order systems
• Simplify complicated functions with simpler ones

COMMON MATHEMATICAL PROBLEMS

System of Linear Equations
The Linear systems of equations are widely spread in scientific problems 
in areas such as biology, chemistry, physics, and engineering. The 
fundamental problem involving systems of linear equations is to find 
the value of a set of unknown variables given a set of linear equations. 
If the system of equations is the same as the number of variables then 
the system has a unique solution for the variables. In the case that the 
number of equations is less than the number of variables, then the system 
has many different solutions. If the number of equations is higher than 
the number of variables, the system has no solution, but approximations 
can be found. 

A linear system of equations can be mathematically expressed 
according the following equations:

1,1 1 1,2 2 1, 1  + +…+ =n na x a x a x b

2,1 1 2,2 2 2, 2  + +…+ =n na x a x a x b



,1 1 ,2 2 ,  + +…+ =n n n n n na x a x a x b

With n  unknowns 1,2,..nx .The same system can be better represented 
in the matrix form as follows:
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1,1 1,2 1, 1 1

2,1 2,2 2, 2 2

,1 ,2 ,

  

…     
     …     =
     
     …     

   
 

n

n

n n n n n n

a a a x b

a a a x b

a a a x b

Or in a compact form:
. =A X B

Where A  is the   n x n  matrix of coefficients, B  is the right-hand side 
vector of length n , and X  if the solution vector of length n . 

To analyze how linear systems behave, consider a simple 2x2 system 
of linear equations:

1,1 1,2 1 1

2,1 2,2 2 2

  
     

=     
    

a a x b

a a x b

If all the values of the coefficient matrix are different from zero, the 
system can be rewritten in the form of the following two equations:

1,1
2 1 1

1,2

  =− +
a

x x b
a

2,1
2 1 2

2,2

= − +
a

x x b
a

Which defines the slope-intercept equations of two lines in a plane. 

The set of solutions (values for 1x  and 2x ) consists of all points in the plane 
where the two lines intersect. For this case, there are three possibilities:

• A unique solution – the lines intersect at a single point in space.
• No solution – the lines are parallel, therefore there is no 

intersection.
• Infinitely many solutions – the lines are parallel with the same 

intercept.
These conditions hold for any type of linear system of equations, 

independent on the size of matrixes. A system is called nonsingular if 
it has one and only one solution. On the other hand, it is referred to as 
singular if it has no solution or an infinite set of solutions.
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To check if the system is nonsingular, the matrix A  must satisfy any 
of the following conditions:

• A  has an inverse, i.e, a matrix denoted 1−A  exists, such that 
the following relation holds 1− =A A I  (identity matrix).

• ( )det 0≠A  

• 
( ) =rank A  n the rank of the matrix A is the maximum number 

of linearly independent rows or columns it possesses.

• For any vector  0≠y ,  0≠Ay

If any of the conditions above hold, then the system is no trivial, and 
it either possess no solution or an infinite set of solutions.

Solution using Cramer Rule
According the Cramer’s rule, the value of the unknowns in a linear 
system is given by fractions which the denominator is the determinant 
of the coefficient matrix and the numerator is the determinant of the 
coefficient matrix replacing each column by the right-hand side vector 
of the system.

We exemplify the application by solving the following system of 
linear equations:

1

2

3

1 2 3 10
1 2 4   11

5 6 1 28

     
     − − − = −     
          

x

x

x

The first step to find the values of 1x , 2x  and 3x , is to find the 
determinant of the coefficient matrix:

( )
1 2 3

det  1 2 4  4
5 6 1

  
  = − − − =−  
    

A det

The next steps consist on calculating the determinant of the coefficient 
matrix replacing each column of it by the right-hand side vector. Replacing 
the columns, one can find the following determinants:
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( )1

10 2 3
det  11 2 4  12

28 6 1

  
  = − − − =−  
    

Ax det

( )2

1 10 3
det  1 11 4  8

5 28 1

  
  = − − − =−  
    

Ax det

( )3

1 2 10
det  1 2 11  4

5 6 28

  
  = − − − =−  
    

Ax det

The last step consists on obtaining the value for each unknown 

variable in the respective order by dividing the determinant of 1Ax , 

2Ax  and 3Ax  by the determinant of A . By doing this one obtains the 
following values for the unknowns:

1
1

det 12 3 
det 4

−
= = =

−
A

x
Ax

2
2

det 8 2
det 4

−
= = =

−
A

x
Ax

3
3

det 4 1
det 4

−
= = =

−
A

x
Ax

Curve Fitting
Curve fitting consists in methods used to approximate an unknown 
function using some sort of algorithm which derives from the hypothesis 
that the system being fitted behaves according this algorithm (at least in 
the region under analysis). There are two common methods for curve 
fitting:

• Interpolation
• Least squares
Interpolation consists on approximating an unknown function using 

a known one in some point in space contained by known values of the 
unknown function. For instance, consider a system governed by the 
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following equation, where x  are known values given as input to the 
system and y  the output of the function:

( )sin=y x

If one visualizes the values of y inside the range of x between 0 and 
3, the following figure can be produced.

Figure 1: Function y = sin(x).

As already mentioned, the interpolation method is useful to found 
values at unknown regions of the function located between known values. 
The most simple interpolation algorithm consists into the linear one. A 
linear proportion is used to found the unknown value of the function, 
which can be stated as:

1 2 1

1 2 1

  − −
=

− −
y y y y

x x x x

Where y  is the unknown value of the function at the point x . The 

values 1y  and 2y  are known values of the function at the points 1x  and 

2x  respectively. Rearranging the above equation to make y  explicit:

( ) 2 1
1 1

2 1

  −
= + −

−
y y

y y x x
x x

The accuracy of this algorithm for non-linear functions depends on 
the nonlinearity of the function and the range being interpolated. For 
instance, consider that the only known values for the function previously 
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mentioned ( ( )sin=y x  ) are for x = 0 and x = 1. The following figure can 
be used to represent this system.

Figure 2: “Unknown“function values at x = 0 and x = 1.

At first different assumptions can be made regarding the behavior of 
the function between these two points. It may behave as a linear system, 
a parabolic one or an exponential one, as shown in the figures below.

Figure 3: Different assumptions made on the “unknown” function y = sin(x).

Performing the linear interpolation using the previously described 
algorithm, one can obtain the value for y:
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( ) ( )
( )

0.8414 0
0 0.5 0 0.4207

1 0
−

= + − =
−

y

The following figure provides a comparison between the interpolated 
value and the real value of the function (y = sin(x)).

Figure 4: Difference between interpolated value and real value of the function y 
= sin(x) between x = 0 and x = 1.

Depending on the application, one can say that the approximation of 
the interpolated algorithm is reasonable and can be used inside this range 
of the “unknown” function. However, what happens if the interpolation 
is performed in an extended region of the function? Suppose now that 
the now value of the function is between x = 0 and x = 2, for which y = 0 
and y = 0.909. One desires to know the value of y for x = 0.5 performing 
linear interpolation. The calculation is done as follows:

( ) ( )0.909 0
0 0.5 0 0.227

2 0
−

= + − =
−

y

Now comparing the new approximation with the real value of function 
one can obtain the following figure:
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Figure 5: Difference between interpolated value and real value of the function y 
= sin(x) between x = 0 and x = 2.

The approximation gets much worse as the range of the values used to 
perform the interpolation increases. This feature is one of the drawbacks 
of the linear interpolation. Nonetheless, it is a powerful and simple tool 
for estimation and curve fitting.



OBJECT-ORIENTED PROJECT
The field of knowledge responsible of planning, organizing, securing 
and managing resources in order to fulfill specific tasks and objectives 
is referred to as Project Management. The vital challenge of project 
management is to complete all the engineering project tasks and 
objectives, without violating the project scope, time and budget. These 
three are also called project constraints.

The secondary—and more ambitious—challenge is to optimize 
the allocation and integration of inputs necessary to meet pre-defined 
objectives (Thapa, 2011)

There exist different models which can support the development 
process such as Waterfall Model, Spiral Model, RAD Model, Incremental 
Model, Object Oriented Model etc. Each model has advantages and 
disadvantages, and the decision to choose a specific one depends mostly 
on the development team. A second possibility is a combination of 
different models in order to better fulfill project requirements.

When using an object-oriented design, the main building block of the 
software becomes the classes and their instances, or objects. The objects 
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are specific things, while the classes are generalizations of the things. For 
instance, in a software for bioinformatics, a class Lion may define any 
type of lion, of any gender, age or size. On the other hand, an object Lion 
defines one specific lion with (possibly, depending on the necessities 
of the project) defined gender, age, name, size, and so on. In summary, 
every object has its own state and behavior, while the class describes 
which states belongs to the its type (without a defined value) as well as it 
holds the behavior definitions.

According Thapa (2011), the object- oriented approach to software 
development is decidedly a part of the mainstream simply because it has 
proven to be of value in building systems in all sorts of problem domains 
and encompassing all degrees of size and complexity. Furthermore, 
most contemporary languages, operating systems, and tools are object- 
oriented in some fashion, giving greater cause to view the world in 
terms of objects. Object-oriented development provides the conceptual 
foundation for assembling systems out of components using technology 
such as Java Beans or COM+. Constructing object – oriented systems is 
exactly the purpose of the Unified Modeling Language (UML).

Booch (1996) mentions that some advantages of the object-oriented 
project development is the fact that as a common unit of decomposition 
is employed, features such as incrementation and iterative process are 
naturally possible. It is also noticeable that, qualitatively, they demand 
different kinds of measures. The following four points are major benefits 
derived from an object-oriented approach:

• Better time to market
• Improved quality
• Greater resilience to change
• Increased degree of reuse
Nonetheless, to fully benefit from this project development approach, 

it is important to consider five habits (Booch, 1996):
• A ruthless focus on the development of a system that provides a 

well-understood collection of essential minimal characteristics;
• The existence of a culture that is centered on results, encourages 

communication, and yet is not afraid to fail
• The effective use of object-oriented modeling
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• The existence of a strong architectural vision
• The application of a well-managed iterative and incremental 

development life cycle
Although this points may appear to be generic in the context of 

project management, the presence of object-oriented approach in the 
design process reinforces the attention that should be taken at each point.

The first point, ruthlessness, is special applied in object-oriented 
design, since a project is supposed to better react to changes in the 
understanding of the real problem. When this changes are applied to the 
project, not much effort should be required to tune the project, which 
means that no many parts of the software are to be necessarily rewritten, 
for it should support modularity and extensibility.

An efficient object-oriented software development organization is 
focused in the development, delivery and maintenance of the software 
products satisfying the users requirements and providing delighting 
features. Each activity performed during the software development: 
analysis, design, implementation, quality assurance and documentation 
are only important if they are ways of achieving the final goal.

A well-organized and efficient object-oriented project should have 
the following features:

• A collection of classes, well organized into hierarchies
• A well-defined set of collaborations that specifies the different 

ways that the classes communicate with one another, providing 
system functionalities.

Naturally, a huge collection of classes and definitions of interactions 
among them does not necessarily make a good and efficient software. 
This is only achieved by implementing just the necessary number 
of artifacts that the software requires. An excess of prototypes, test 
scaffolding, documentation and team will basically waste resources and 
decrease code readability and extensibility. The reusable artifacts of 
every software project include:

• Architecture
• Design
• Code
• Requirements
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• Data
• Human interfaces
• Estimates
• Project plans
• Test plans
• Documentation
Jones apud Booch (1996) refers to these artifacts as reusable because 

they may surpass the lifespan of the project that created them. The same 
piece of code can be transported from one project to another. The design 
of an user interface of one application may be also used in a second one. 
Frameworks can be architectures serving as foundation for an entirely 
family of programs.

INTRODUCTION TO PROGRAMMING
A computer program can be seen as a series of instruction that defines 
how some electrical impulses flow inside a computer system. These 
impulses are not restricted to the computer’s memory, but they interact 
with mouse, keyboard, screen and any other peripheral connected to the 
machine, in order to produce the tasks that the program issued. These 
tasks can be from a simple blank screen where the user is allowed to type 
some text, to high-level games where artificial intelligence is required to 
challenge the user of the machine.

Software
A software is a computer program itself. It contains not only one, but a 
collection of instructions, which may be organized into different files, 
that defines the series of task that the computer should perform. In order 
to be stored, some sort of medium must be used which is capable of 
recording the instructions and transmitting it to the computer. The simplest 
example of a medium storing such instructions would be a simple piece 
of paper with some code written on it. While this type of medium is 
easy for a human to read and maybe even to somehow understands what 
the computer should do, it is not the most viable way for a computer to 
understand the program. So floppy disks, CD, DVD, USB pen drive are 
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all examples of mediums that can store a software, and are readable by 
a computer.

Before being used, the software must be read by the memory of the 
computer, also called Random Access Memory (RAM). This is normally 
achieved by storing the program in the hard-driver of the computer, 
which is accessible by the internal memory of the computer through 
electromagnetic reading of the patterns stored. Such patterns are not 
easily understandable by humans, for they are a sequence of zeros and 
ones, such as:
00111001000111

A computer is capable of translating such sequence in some sort of 
task that it should perform, such as the blink of a screen, the writing or 
reading of a document, etc. Each type of processor has its own language, 
or way of interpreting the series of ones and zeros. For example, in a 
Windows system the above sequence may tell the machine to blink the 
screen, while in a Mac OS it may mean that a document should be printed. 
This means that each processor has its own machine language.

Software development tools
Suppose a programmer wants that a computer sums two numbers, and 
print in the screen the result of this algebraic operation. How can this be 
performed with the series of zeros and ones mentioned earlier? That`s 
not an easy task, and it can become nearly impossible when it refers to 
complex series of tasks, performed by operating systems or high-level 
commercial software’s.

For that reason, tools were developed, which software instructions are 
seen as a series of symbols or text that are easier for a human to manage 
than a binary sequence. These tools convert the textual or graphical 
instructions developed by the programmer into machine language, which 
can be read by the computer. For instance, C++ programming language 
allow developers to see the instructions to a computer in a way very 
similar to the English language. However, the syntax is developed in 
a much simpler way, for natural language has natural ambiguity and it 
may require a good background knowledge from the message recipient 
to clearly understand what is being said.
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Coming back to the example mentioned in the beginning of this 
subsection, in which the developed wanted the machine to sum two 
numbers and print it to the screen. In C++ language, this can be simply 
done by writing the following set of instructions:

a = 1
b = 2
c = a + b 
The example above is not a complete program, but it is an example 

of how the instructions can be much easier understandable using these 
development tools rather than the binary sequence, which is the natural 
language of a machine. This does not mean that a computer can directly 
understand the sequence written above, but it uses a compiler, or 
translator, to rewrite the instructions above in its language.

In language used to write the code (higher-level) is referred to as 
source code. The language that is read by the machine is referred to as 
target code. A source code can be translated to different target codes, 
depending on the processor used. This means that for a Mac OS system, 
or a Windows system, the same instructions written in C++ for instance, 
can perform the same tasks, although these tasks are internally translated 
to totally different target codes.

To develop softwares, a series of tools are available. Some of these 
are:

• Editors
An editor can be from a plain text editor such as Notepad, to a very 

detailed software with different tools that may help the developer to 
speed up the program development process. In the editor, the developer 
writes the instructions as if he was written in text, however following 
the rules according the programming language used, similarly to natural 
languages. For instance, the following statement in English:

“The big red train travels to the beautiful station of Amsterdam”
Is grammatically correct in English. However, if we rewrite it as:
“The train big red to the beautiful station travels of Amsterdam”
Is wrong and cannot be easily understandable by another person. In 

the case of a computer program, the “grammar” must be perfectly well 
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written, otherwise errors are produced or the software does not perform 
the desired task exactly as wanted.

For example, in computer language, if one wants to create a variable 
called dog and to attribute the value of 10 to it, in C++ language as well 
as many other languages this could be written in an editor as:
dog = 10

On the other hand, is one wants to perform this task, but writes it in 
the following form:
dog is equal to 10

This will issue an error in a C++ program, although from a human 
point of view is clearly understandable that the dog variable is equal to 
10. The programming languages have strict rules that have to be follow 
in order to work properly.

Compiler
A compiler is the piece of tool responsible of translating the code 
from the source code to the target code, which may not necessarily be 
machine-language. For instance, MATLAB, a high-level programming 
language has tools to compile some code into faster C code. The C code 
is then processed by a C compiler to produce and executable program. 
The process of compilation follows a set of instructions or procedures 
which are:

• Preprocessor: — as the name refers to, it processes some 
header and instructions to modify the content of the source file 
before the compiler begins.

• Compiler – translates the processed code into target code.

• Linker – It links or combines both the compiled code with 
the compiler-generated machine code to make a complete 
executable program.

• Debugger – A tool that makes it possible for a user or a 
developed to trace back errors in the program or in its execution, 
even in the level of line by line. The debugger keeps track of 
the value of variables, objects and other generated elements 
of the program, so the developed can see it these values are as 
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expected, and if not, he can know the piece of information that 
is generating the error.

• Profiler – A tool that keeps track of the performance of the 
program. With it, a developer can trace with elements are 
taking more memory and time, and optimize the code so it can 
run smoothly and faster, without non-usable code.

UNIFIED MODELLING LANGUAGE
The so-called Unified Modelling Language (UML) is a broadly known 
tool for developing software in general. It implements international 
industry standard graphical notation to describe and characterize software 
analysis and design. The use of a standardized notation for software 
development leaves little or no room for misinterpretation and ambiguity.

The UML derives from the unification of notations developed by 
Booch, Rumbaugh, Jacobson, Mellor, Shlaer, Coad, and Wirf-Brock, 
among others (Williams, 2004). It has been accepted as a standard by the 
Object Management Group (OMG), which is a non-profit organization 
responsible for distributing object-oriented computing.

The UML is specially useful for object-oriented scientific computing 
for, as it follows the basic notions of object-oriented programming, it can 
be used as a standard and a visual tool to analyze and design scientific 
software.

A model in UML is composed of three basic elements:
• UML building blocks
• Rules to connect blocks 
• UML common mechanisms
Regarding the UML building blocks, they can be divided into three 

types:
• Things
• Relationships
• Diagrams
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Things
The Things are the most important building block type in UML language. 
They can be subdivided into:

• Structural
• Behavioral
• Grouping
• Annotational
Structural things are static components of the model, representing 

physical elements or concepts that the model possess. The following is a 
description of the structural elements in UML:

Class: Using the same original concept of object-oriented language, 
a class defines the attributes and behavior of a set of similar objects in the 
system. Example: the Dog class defines the behavior of Rex, Daisy and 
Max, three different “objects” derived from the same class.

The UML representation of the Class is as follows:

Figure 1: The Class thing representation in UML.

Interface: The Interface specifies the responsibilities of a class, by 
defining a set of operations attributed to it.

The following figure is the standard representation of the Interface 
block.

Figure 2: The Interface thing representation in UML.

Collaboration: A block that defines the interaction between two 
elements in the model. The representation of the Collaboration is as 
follows.
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Figure 3: The Collaboration thing representation in UML.

Use case: This block represents a set of actions performed by a 
system to reach a specific objective.

Figure 4: Use Case representation in UML.

Component: This block represents a physical part of the system. The 
graphical representation of a Component block is done according the 
following figure.

Figure 5: Component block representation in UML.

Node: The Node block is a physical element that exists during the 
execution of the model. Its representation is done as follows.

Figure 6: Node block representation in UML.

The Behavioral things are dynamic elements of the UML model. They 
represent interactions between structural things, as well as the current 
state of a thing. The following blocks are behavioral things in UML:

Interaction: Is a block consisting of one or more messages exchanged 
among blocks in order to perform a determined task or to reach a specific 
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objective at simulation time. The following figure is a representation of 
this block.

Figure 7: Interaction block representation in UML.

State Machine: This block is used to define the different states a 
block goes through during its lifetime (simulation time). These states are 
usually responses to different events issued in the model, generated by 
external factor.

Figure 8: State Machine block representation in UML.

Behavioral and Structural things are grouped together using 
another type of building block in UML, referred to as grouping thing. 
There is basically one type of grouping thing, the Package. The UML 
representation of this building block is shown below.

Figure 9: Package block representation in UML.

In many situations, it is useful to add comments, remarks, highlights 
or any sort of special information in the model, which does not necessarily 
interact with the model, but it is used as a small piece of information 
between human-machine. In UML, the An notational things are used to 
perform this type of procedure. The unique building block in this type of 
thing is the Note, and its representation in UML notation is shown below.
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Figure 10: Note block representation in UML.

Relationships
Another very important concept in UML, the Relationship shows how 
elements are associated with each other. This association is an important 
feature that determines the functionality of the software.

• There are four different kinds of Relationship in UML:
• Dependency
• Association
• Generalization
• Realization
Dependency: This kind of relationship determined that the changes 

in one element causes transformation in the dependent element. The 
representation is done as follows.

Figure 11: Dependency block representation in UML.

Association: It determines a collection of linked UML elements 
in the model, describing also how many objects are taking part in that 
relationship.

Figure 12: Association representation in UML.

Generalization: The generalization reveals a relationship of 
specialized – generic element in the UML diagram. It describes a relation 
of inheritance between the connected objects. For example, from a 
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“Plant” object to a “Flower” object and a “Tree” object. The following is 
the UML representation of such block.

Figure 13: Generalization block in UML.

Realization: The realization block, as the name suggests, reveals a 
relationship in which one block tells the other what must be realized. 
The first block does not realize it, but the second one. It is especially 
useful for the development of interfaces. The following figure shows its 
representation.

Figure 14: Realization block in UML representation.

Ways of modelling
UML, as a versatile language, allows different approaches for different 
model types. These different approaches define which tools will be used 
in which way. Three different ways of modelling, of model types are 
clearly defined in UML. They are:

• Structural Modelling
• Behavioral Modelling
• Architectural Modelling
Structural Modelling: As the name suggests, this approach is used 

to capture the static features of a system. It consists of the following 
elements:

• Classes diagrams
• Objects diagrams
• Deployment diagrams
• Package diagrams
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• Composite structure diagram
• Component diagram
The structural model of the system represents the very existence of 

it, with its components all clearly stated. Therefore, the class diagram, 
component diagram and deployment diagrams are part of structural 
modeling, representing the elements and the mechanism to connect them.

Behavioral Modelling: In contrast with the structural modelling, the 
behavioral one reveals the dynamics of the model, how things interacts 
and how they change during their lifecycle. It consists of the following 
diagrams:

• Activity diagrams
• Interaction diagrams
• Use case diagrams
These diagrams are used to show the flow of data and information in 

the model. 
Architectural Modelling: The architectural modelling represents the 

combination of the structural modelling and the behavioral modeling. It 
can be defined as the blueprint of the whole system. The Package diagram 
comes under this modelling structure.

Diagrams
A diagram in UML is an element used to plot all the things and 
relationships, showing the entire behavior and relations inside the system 
under analysis. The visualization of these diagrams is the most important 
aspect of the entire UML model development.

Because the complexity of a system usually cannot be seen from 
a single perspective, UML possess 9 different diagrams with details 
specific to each that makes it capable of interpreting the majority of real 
and human-developed systems. These diagrams are:

• Class diagram
• Object diagram
• Use case diagram
• Sequence diagram
• Collaboration diagram
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• Activity diagram
• Statechart diagram
• Deployment diagram
• Component diagram

Class diagrams
The Class diagrams are developed in two main phases of the model 
implementation: analysis and design phases. At the analysis phase, the 
conceptualization of the class is very high, and its representation until 
this moment may only be a symbolic name with some general description 
and pseudo-code describing the main operations performed by this class. 
It may be used to reveal the relationships in the problem domain, but the 
system implementation is still not clear at his phase.

At the design phase, the class diagrams already reach a more concrete 
state, with clear attributes and operations, detailing implementation 
procedures and the relationships existent among the various classes.

There are some conventions for the definition of class diagrams:
• The name of the class has to start with a capital letter (e.g class 

Dog and not class dog).
• The name of the class is written on the top of the class, in 

separated compartment (rectangle), in such a way that any one 
can clearly note that the name identifies that class.

• The second compartment (rectangle) is reserved to the 
attributes/ data menbers of the class (if any).

• The lower compartment states the methods/ operations 
performed by such class.

• Optionally, a last compartment can be added to refer to special 
features of the class that may not fit into attributes/ data or 
operations.

Taking the above conventions into account, a more concise notation 
of the class diagram is represented below.



Object-oriented Modelling for Scientific Computing42

Figure 15: Notation of class diagram.

The former can be exemplified by a generic Box, or Volume, with 
attributes such as:

• Name, or Identification (not the name of the class, but a name 
or identification for each instance of the class)

• Height
• Width
• Depth
• Amount of things
And things can be added or removed from the box, so the following 

operations may be performed:
• Add thing
• Remove thing
Taking all of this into account, the class diagram Box is represented 

below:

Figure 16: Representation of the Box class diagram.
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Object diagrams
Object diagrams are representations of specific instances of classes 
developed before. The concepts applied to the class diagram are in 
this sense, the same applied to the object diagram. An important aspect 
of object diagrams is that they are a static view of the system being 
modelled, so they represent a snapshot of the system at a particular time 
of the simulation lifetime.

In a class diagram, the desired concept is represented as an abstract 
model consisting of classes and their relationship. On the other hand, 
object diagrams as specific representations of such abstract models, 
which exists in a particular moment of the simulation (or at any moment), 
with a concrete nature.

There are different purposes in using an object diagram, such as:
• Forward and reverse engineering of the system;
• Analysis and visualization of objects relationship in a system;
• Static view of interaction;
• To be able to acknowledge object behavior, as well as the 

relationship among them in a practical sense.
The following figure illustrates the difference between a class 

diagram and an object diagram. In the right side (the class diagram) an 
abstract polynomial class is defined. The polynomial class can define 
polynomials (instances of the class) with different orders, different 
constant values and so on. On the left side (the object diagram) a specific 
instance of the polynomial class is defined, which is classed poly12. An 
instance has defined properties and attributed values to it, although it 
may change at different simulation moments. Nonetheless, if a snapshot 
of the simulation is taken, the object at that specific moment has definite 
values and it highly concrete.

Figure 17: Class diagram (left) and object diagram (right) in UML.
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Use case diagrams
A Use case diagram refers to how the users (also denoted as actors) 
interact with the system. A set of special symbols and connectors are 
used to illustrate these relationships. The following purposes should be 
fulfilled when setting up such diagram:

• The scenarios in which the system interacts with people, 
organizations, or other systems;

• The objectives or tasks that such actors achieve;
• The scope of the system.
The purpose of an use case diagram is not to depict detailed interaction 

of the user at each simulation time with the system. Rather, the objective 
of it is to show a general overview of the relationship among actors, use 
cases and systems. In simple systems, a use case diagram can be replaced 
by a use case textual description, if the developer desires to do so.

In the diagram, each use case is symbolized with a labeled oval shape. 
Lines represent actors in the process, and each actor interaction with the 
system is represented with a line between the actor and the use case. The 
system is limited with a box around the use case.

The following figure illustrates a simple use case diagram of a 
simulator / equation calculator. The user interacts with the system by 
providing the necessary parameters, solvers, etc in order to configure the 
model or equation to be simulated. 

Figure 18: Example of a use case diagram (Simulator).
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On the other hand, the Model / Equation external service captures the 
configuration provided by the user as well as the run simulation command 
in order to generate the results. A post process function is used to prost 
process the data and generate reports / outputs.

The ideal application of use case diagrams is in cases such as (Lucid 
Chart, --):

• To represent the goals or objectives of user-system interaction;
• Define and organize functional requirements in a system;
• Specify the context and requirements of a system;
• Modelling the basic flow of events in a use case.
The main components of a use case diagram are:
• Actors: The person, organization or external service that 

interacts with the system. They must be external and must 
produce/ consume data. The total set of actors in a use case 
model reflects everything that needs to exchange information 
with the system (Rosenberg and Scott, 1999).

• Scenario: Also referred to as system, is the sequence of actions 
and interactions between actors and the system.

• Goals: the result of most use cases. A good use case diagram 
is supposed to show the activities and variants to reach the 
necessary goal.

The relationship between an actor and the use cases is not a single 
one, rather it may be of different kinds. The default relationship if the 
«communicates» relationship. This type of relationship is used to show 
that the actor has issued a request to the use case, or vice-versa. The actor’s 
issues requests usually requiring measurable outputs. A more abstract 
relationship may exist between different use cases. If a line without label 
is written in a use case diagram, then a relationship of «communicates» 
exists between the two entities involved.

Regarding use cases relationships, as mentioned earlier, they may 
be far more abstract than the relationship between actors and use cases. 
In UML, there are two possible types of relationships among use cases. 
These types are:

• <<include>>
• <<extend>>
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The <<include>> relationship is used to extend the functionality of 
a use case, incorporating the behavior of the one in the other extreme 
of the relationship line. In this it is avoided the repetition of a behavior 
description through the inheritance of it. As an example, suppose that 
different functionalities in a simulator application requires the user 
performs the same action. In this case, these functionalities will all have 
a <<include>> relationship with this common use case task. Because this 
type of relationship is not the default one, a label must be provided over 
the relationship symbol to make it explicit.

The <<extend>> relationship is used when a use case may perform a 
different behavior or a specific one at a specific lifetime of the simulation, 
under certain stated conditions. This means that this task will not be 
performed for sure every time that the use case runs, but only on special 
occasions. For example, suppose that a system which an user provides 
a number for a “Root Calculator” use case, and it calculates the squared 
root of this number. It is supposed that the user will provide positive 
numbers, so the square root calculation is straight forward. However, 
what happens if the user provides a negative number? A <<extend>> 
relationship can be used to, for example, issue an error and to ask for 
the user to provide positive numbers only, or a different algorithm which 
is able of calculating complex results for the square root of a negative 
number.

Sequence diagrams
As the name shows, sequence diagrams describe a chronological 
sequence of events of the system, and are mainly used in analysis and 
design phases. When a sequence diagram is created, objects defined in 
use cases are identified and considered as participants of the sequence. 
Different pieces of the use case behavior are attributed to objects in the 
form of services.

Sequence diagrams can be used to refine the use case diagram, for 
during each implementation the developer can figure out at what specific 
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time of the simulation lifetime each event occur, and if an interaction 
which was not depicted before can be used to refine the use case diagram. 
The same can be said for an interaction that it never happens in a sequence 
diagram, can also be eliminated from an use case diagram.

According Williams (2004), in a sequence diagram, objects are shown 
in columns, with their object symbol on the top of the line. Similar to the 
class diagram, the object name appears in a rectangle. If a class name is 
specified, it appears before the colon. The object name always appears 
after a colon (even if no class name is specified). If an external actor (see 
the preceding Use Case Diagram section above) initiates any interaction, 
the stick figure can be used rather than a rectangle.

The diagram is seen in two dimensions. The vertical dimension refers 
to the simulation time, or application lifetime. The horizontal dimension 
represents the objects existent in the system. The sequence of events start 
at the top-left corner of the diagram, and the time progresses from top to 
down. The vertical line is referred to as object’s lifeline. The ordering of 
the objects in the horizontal is arbitrary.

The representation of a message sent from one object to another is 
done with a line from the sender to the receiver labeled at a minimum 
with a message name. Optionally, the message label can include the 
information (arguments) that are necessary to the sent to the receiver 
with the message. When the receiver gets the message, a corresponding 
operation is executed, and during the realization of such task, other 
messages may be sent to other objects. An object can also send a message 
to itself, represented by an arrow from the object line to the same line.

The following figure illustrates a simple sequence diagram of an 
elevator service. These diagrams are normally concrete and represent 
one scenario. It may be necessary for an application to have a series of 
sequences diagrams, each one showing a specific scenario, according the 
user requirement.
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Figure 19: Use case diagram of an elevator service. (Source: http://www.web-
feats.com)

Collaboration diagrams
The Collaboration diagram is similar to the Sequence diagram, in the 
sense that it represents the interactive behavior of objects in UML. The 
main difference relies in the fact that, while Sequence diagrams illustrates 
the time flow of messages in a model, the collaboration diagram shows 
the structural organization of the objects that send or receive messages.

State diagrams
This type of diagrams describe the behavior of nontrivial objects. It 
is mainly developed during the analysis and design phases. They are 
especially useful for describing the states of an object across different 
use cases, and also to identify object attributes as well as to refine the 
behavior description of an object (Williams, 2004).

To understand what the purpose of such diagram is, it is necessary to 
define what a state in UML is. A state is a condition that a object can be 
at some point during its lifetime, within a time frame. The state diagrams 
should be able to describe each and every condition (state) that an object 
may go through during its lifetime, as a result of interaction with different 
elements in the systems that generates a transition in the object’s state.
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The main purposes of the state diagram are:
• To model the dynamics of a system;
• To model the lifetime of a reactive system;
• To describe the different states that an object goes through 

during its lifetime.
• To outline a state machine capable of modelling the states of 

an object.
Different symbols are used to represent each feature of the state 

diagram. A state is represented by a rounded rectangle, as shown in the 
figure below.

Figure 20: State representation in UML.

The initial condition (start state) is represented by a filled circle, as 
shown in the figure below.

Figure 21: Initial state representation in UML.

The final condition is represented by a filled circle with another circle 
around it

Figure 22: Final state representation in UML.
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A transition or a change in the state is represented through arrow lines 
connecting different states, which is triggered by events, conditions or 
time.

Activity diagrams
An activity diagrams is mainly developed during the implementation 
of “complicated” methods that may require many different activities to 
be performed in specific sequences. The activity diagram can also be 
incorporated in a system model during the analysis to better understand 
the flow of a use case, by breaking it down. Through an activity diagram, 
the developer postulates the sequence of rules that the use case must 
perform.

Basically, an activity can be described as an action that must be 
performed, either by a human or a computer. Each activity block must 
be a single step. For instance, the task “cook rice” is not a single activity, 
for it involves a series of single actions. These actions are, a simple 
way, to boil the water, to pour the rice in the water, wait for free water 
evaporation and finally to remove the rice from the heat. The description 
of these activities in a flow sheet constitutes an activity diagram. 
This is an example of a series of activities that must be performed in 
a row. Alternatively, an activity diagram may show activities that may 
be performed in parallel to each other, and some symbols are used to 
guarantee synchronism, i.e, all the activities before have been finished 
before going to a next step. This can be exemplified in a more refined 
example of the “cook rice” simulation, for the water can be boiled while 
some garlic is being fried and rice is added and salted. When the rice 
is pre-prepared and the water is boiled (synchronism), then we add the 
water to the rice and next activities are the same as described above.

The main purposes of an activity diagram are:
• Draw the activity flow of a system;
• Describe activities in a sequential way;
• Described parallel, sequential, branched and concurrent flow 

of the system.
The following elements are involved in an activity diagram:
• Activites: the main core of the diagram.
• Association



Object-Oriented Development and Programming 51

• Conditions
• Constraints
The used symbols and representation in an activity diagram are 

very similar to a state diagram. Two additional symbols are used: the 
synchronization bar and the decision symbol. 

As the name resembles, the synchronization bar indicates that all 
parallel activities above it must be finished before proceeding to the next 
activities. This allows concurrent activities to exist and to define the point 
where the output of them must be ready to serve as a trigger to the next 
activities.

The decision symbol is a diamond shape, with one or more incoming 
arrows and one or more outgoing arrows, each one labeled by a distinct 
condition (Williams, 2004). The condition is a Boolean value (true or 
false, 0 or 1) which defines all possible outgoings of a decision element.

Component diagrams
The main focus of a component diagram is to reveal the relations existent 
among different components of the system. The component is defined 
in UML as a module of classes which represent independent systems 
or subsystems with the capability of interfacing with the system as a 
whole. A system mainly based in this type of approach is referred to as 
component-based development. The component diagrams also allows an 
overview of the whole project, in such a way that the developer has a 
general outlook of what the system is supposed to do.

From an object-oriented point of view in scientific computing, the 
component diagram allows the main developer to arrange classes in 
groups based on a common purpose. In this way, other developers can 
also have a general outlook of the project in a higher level.

The main distinction between a component and a class is done in the 
header of the symbol. A component is also represented with the keyword 
<<component>> and/or the component symbol. This is very important 
for, the same symbol without this indication is a class object.

The following figure illustrates a component object in UML. As 
mentioned before, special attention is given to the header with the 
keyword and the component logo.
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Figure 23: Component example in UML.

The interfaces of a component are represented in a similar way that 
is done with attributes and methods in a class object. These interfaces 
represent the location where the group of classes inside the component 
interacts with other system components. There are two common 
interfaces: the provided interfaces and the required interfaces.

The provided interfaces are represented as a straight line from the 
component box with an attached circle. The provided interfaces represent 
communication between data produced by the current component with 
an external one.

The required interfaces are represented using a straight line from 
the component box with an attached half circle. Alternatively, it can 
be represented as a dashed arrow with an open arrow. It indicates the 
interfaces used to obtain information for a component in order to perform 
the function it was designed for.

The component diagrams should generate communication between:
• The scope of the system;
• The overall structure of the application;
• Specific objectives that users or external services may need to 

achieve.
The following is an example of component diagram in scientific 

computing. It can be clearly seen that the use of UML notation to develop 
such system makes the development of Object Oriented programming 
much easier.
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Figure 24: Example of Component diagram in OOP for scientific computing.

Deployment diagrams
In essence, a deployment diagram describes the physical deployment of 
information that the software generates. Each information generated by 
the software is called an artifact. The basic building block for this type 
of diagram is the node, which represents the basic software or hardware 
elements in the system. Lines between nodes indicate relationships and 
shapes inside nodes represent software artifacts that are deployed.

The deployment diagrams are applicable in:
• Showing which software elements are deployed by which 

hardware elements;
• Illustrating the runtime processing for hardware;
• Provide the topology of a hardware system.
The process of developing deployment diagrams involves tasks such 

as: identifying the scope of the system under development, whether 
it involves a single machine or a network or computers; identify the 
hardware limitation of the system and take this into consideration in the 
development of the system. 

Applications of UML in Object-Oriented Scientific  
Computing
Recently there are different research lines in using UML for scientific 
computing. In this chapter some applications are reviewed, which also 
serve as ideas to help the reader in his own application of this tool.
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• Back in 2007, Selic addressed the issue of software’s which 
are developed using different programming languages and 
conventions, which inherits supported tools which are not 
very user friendly and not well designed as well. The intent 
was to develop an expressive domain specific language, still 
keeping the benefits of the existent programming languages 
and frameworks. The solution addressed by the author is to 
use UML profile mechanism to define your “expressive” 
domain specific modeling language. This confronts with the 
use of DSL in conformation with the UML standards. The new 
implementation is referred to as DSML (Directory Services 
Markup Language).

Regarding using cloud resources for scientific computing, Ostermann 
et al. (2009) revised the challenges and usuability of compute Clouds to 
extend a Grid workflow middleware and show on a real implementation 
that this can speed up executions of scientific workflows. This real 
implementation makes use of UML notation in order to have a standard 
for the implemented models, in such a way that no specific piece of 
software needs to be run in a cloud machine, but all the users involved 
uses the same one, i.e ASKALON which is a workflow library using 
UML standard notation.

Qin and Fahringer (2012) developed a workflow environment called 
ASKALON Workflow Hosting Environment (AWHE), a workflow 
library to develop models using the latest standard UML Activity 
diagram. The modelling environment incorporates predefined UML 
modelling elements and user-defined constructs used to generate the 
AWDL (Abstract Workflow Description Language) representations of 
scientific workflows and submit them to the ASKALON runtime system 
for execution.

In the same year (2012), Perez et al. developed pyOpt, an object-
oriented framework for formulating and solving nonlinear constrained 
optimization problems in an efficient, reusable and portable manner. 
The framework uses object-oriented concepts, such as class inheritance 
and operator overloading, to maintain a distinct separation between 



Object-Oriented Development and Programming 55

the problem formulation and the optimization approach used to solve 
the problem. The framework is developed in the Python programming 
language. Although the software itself does not make use of UML 
notation, the authors show how UML notation was used throughout the 
process of software development and how the visualization of it facilitates 
the analyses and understanding of the whole system.

C++
Before starting to program in C++, it is necessary to have installed 

in the computer some editor, a compiler, preprocessor and a debugger. 
Fortunately, it is not necessary to search for each one of these, as there 
are softwares available, integrating all these tools into a single piece 
of program. Some examples that the reader can obtain are listed in the 
following table:

Software License Windows Linux Mac OS

C++Builder Proprietary Yes No Yes

Code::Blocks GPL Yes Yes Yes

Dev-C++ GPL Yes No No

Eclipse CDT EPL Yes Yes Yes

In the present book, we will focus on the development using 
Code::Blocks, because it is free and one of the easiest tools to develop 
in C++.

Installing an IDE (Code::Blocks)
Before we start any programming, it is necessary to download and install 
the IDE, which will help us to go through the tutorial. The Code::Blocks 
is a free software to develop in C, C++ and FORTRAN, with a clean and 
easy usable IDE. To obtain it, first navigate to the website: http://www.
codeblocks.org

And under the sections “Download”, look for the binary release, 
which is the easiest way to install the software. Once downloaded and 
installed, we can start with the programming.

One the software starts, the following screen is shown:
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A new project can be created, by clicking in the link Create a new project, in the 
main program area. We will create a simple program, which will show a mes-
sage in the screen and the user can click any button to close it. Although this 
piece of software is not clearly useful, it will help the reader to get a first contact 
with the C++ programming language.

After clicking in the Create a new project button, the program shows 
the following box:
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The project we would like to create is a simple console application. To 
create it, just click the icon Console application, on the top right corner, 
and the button Go will unblock. This button leads us to the wizard, or 
step-by-step helper to begin the project.

The next window is a welcome window, and a check box can be 
selected to skip it next time the user starts a project. Clicking on the Next 
button, the program asks with the developer wants to write a C or a C++ 
project. For our project, select C++ and click the Next button.

In this moment, it is necessary to define the project title, the 
folder where the project will be saved. In the Project Title box, type: 
“HelloWorld” (without the quotation marks), and select a folder to save 
your project. The program automatically fills the box Project filename, 
with what was written in the project title box, plus a “.cbp” ending. The 
last box shows the complete filename for your project, including the 
“.cbp” file.

Clicking Next, a new window is issued, and a compiler must be 
selected. Make sure to select one compiler already installed in the 
computer. If unsure, for Windows users, a free Windows C++ 2010 
compiler can be downloaded from Windows© website (https://www.
microsoft.com). There are two selection boxed below for Debug and 
Release configuration, selected by default. Just click the Finish button.

Developing a first program
Once a new project was created in the previous sub section, it is time to 
start the real programming. On the extreme upper left corner, a project 
tree can be seen. It is necessary to fully expand this tree to see the source 
code, as showed below:
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Now double-click the “main.cpp” file to see its content. The following 
text is shown:
#-----------------------------------------------------------------------------------------
1 #include <iostream>
2  
3  using namespace std;
4  
5  int main()
6  {
7      cout << “Hello world!” << endl;
8      return 0;
9  }
#-----------------------------------------------------------------------------------------

We will not go through all the details and lines of the program, but 
some features must be highlighted:

The first line reads:
1 #include <iostream>

Is an information necessary for the preprocessor, to know which 
libraries, or additional code are necessary to be linked to the source code 
for the program to run. In this case, the library iostream read or write to 
the standard input/output streams. This library is necessary if we want 
to have some sort of input from the user or output to the screen, among 
other uses.
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The second line is an empty line. Lines without text are just ignored 
by the compiler. So why they are used? For a better readability of the 
developer. In the same way that regular English text is organized in 
chapters, paragraphs and so on, the programs are organized in blocks and 
these blocks are better seen if some space is inserted between them.

The third line:
3  using namespace std;

Is a definition which allows the developer to use functions, classes 
and constants without always redeclaring the namespace from which it 
belongs. For instance, the same program above could be written without 
the statement on the third line in the following form:
#-------------------------------------------------------------------------------------
----
1 #include <iostream>
2  
3  int main()
4  {
5      std::cout << “Hello world!” << std::endl;
6      return 0;

7  }
#-------------------------------------------------------------------------------------
----

Which issues exactly the same result of the program before, with the 
difference the wherever it is used the function cout or the function endl, 
it will be necessary to use the directive std:: before. So, the namespace is 
used to spare typing and time for the developer.

The real program starts in line 5 of the original program:
5  int main()

The following line has an open bracket, and the line 9 closes it. 
Everything inside these lines belongs to the program itself. The function 
name main() is a reserved word in C++ so it knows where the main 
program is.

Finally, what the program was designed to perform is line 7:
7      cout << “Hello world!” << endl;
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Which is to simply issue a message in the screen, and the message is: 
“Hello world!”. The function cout  is used to print the expression. After 
<< in the screen, and the directive endl ends the line, so what comes next 
in the program will be printed in the following lines.

The expression in line 8: 
8      return 0;

Is necessary to define what value will be returned to the function 
main(). The beginning of the line 5 says which type of value will be 
returned, in this case an integer (int), so because we are not interested 
in the value itself, we return 0 (zero) to the function, and the program 
terminates.

The program can be run by clicking in different ways in Code::Blocks. 
One option ( and the easiest one) is to click in the Build and run button, 
which lies in the toolbar on the top of the screen.

A second option is to click first on the Build Button (the second 
button to left of the Build and Run Button), which will just compile the 
code. After click on the Run Button (the first button to the left of the 
Build and Run Button), which will run the compiled code. The result 
after following this procedure is shown in the following figure.
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Data types
When programming, it is necessary to store different things in memory, 
such as a number, a name of something, a matrix, etc. This is done by 
using different data types. Depending on the data type, the system allocate 
memory and decides what can be stored in reserved memory.

The following table shows the most basic primitive data types for 
C++ and what it is used for.

Table 1: Primitive data types for C++

Type Keyword Description

Boolean bool Store TRUE or FALSE values

Character char One byte of integer type.

Integer int Stores integers such as 0, 1, 2, 3, …

Floating point float A single-precision floating point value.

Double floating point double A double-precision floating point value.

Valueless void Represents the absence of data

Wide character wchar_t A wide character type.
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The data types can be modified by using one of the following terms:
• signed
• unsigned
• short
• long
The amount of memory and range of data which is used by each type 

of data depends on these modifiers as well. The following table shows 
the memory consumption and the range of data for each type of data, 
unmodified and with the modifiers.

Type Typical Bit 
Width Typical Range

char 1 byte - 128 to 127 or 0 to 255

unsigned char 1 byte 0 to 255

signed char 1 byte -128 to 127

int 4 bytes -2147483648 to 2147483647

unsigned int 4 bytes 0 to 4294967295

signed int 4 bytes -2147483648 to 2147483647

short int 2 bytes -32768 to 32767

unsigned short int 2 bytes 0 to 65,535

signed short int 2 bytes -32768 to 32767

long int 8 bytes -9,223,372,036,854,775,808 to 
9,223,372,036,854,775,807

signed long int 8 bytes -9,223,372,036,854,775,808 to 
9,223,372,036,854,775,807

unsigned long int 8 bytes 0 to 18,446,744,073,709,551,615

float 4 bytes +/- 3.4e +/- 38 (~7 digits)

double 8 bytes +/- 1.7e +/- 308 (~15 digits)

long double 8 bytes +/- 1.7e +/- 308 (~15 digits)

wchar_t 2 or 4 bytes 1 wide character

Declaring variables
In C++, a variable must always be defined before being actually used. 
This definition will tell the machine that some amount of memory needs 
to be reserved to the variable. The declaration is a line containing the 
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type of the data as well as its name, and more than one variable can be 
declared in the same line. For example:
  int a, b;

Tells the compiler that memory needs to be reserved for two variables 
(variable “a” and “b” ), and they are of the type integer.

After being declared, an optional step is to initialize the variable, that 
is to give it an initial value. This is done by writing the variable name, a 
signal sign and the attributed value, as in:
a = 1;

Means that the variable “a” was attributed a value of 1 (one), which 
is an integer. However, what can happen if the variable is initialized with 
the wrong type of value? For example, in the case above the variable 
“a” is supposed to just have integer values. If instead of writing “1”, we 
write:
a = 1.1;

This can be tested in the first program we wrote. After some 
modification, we arrive in a new program as shown below:
1 #include <iostream>
2  
3  using namespace std;
4  
5  int main()
6  {
7      int a,b,c;
8      a = ‘t’;
9      b = 1.1;
10      c = a + b;
11      cout << “Hello world!” << endl;
12      cout << “a” << a << endl;
13      cout << “b” << b << endl;
14      cout << “c” << c << endl;
15      return 0;

16  }
In the example above, the variables “a”, “b” and “c” are declared 

as integers. However, “a” is initialized as a char (‘t’), b is initialized as 
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a float (1.1) and c is the sum of them. What happens in such case. If we 
Build and Run the example, the result is the following:

The value of a was modified to 116, b was changed to 1 and c was, 
as expected the sum of 1 with 116, which is 117. Why was attributed 
the value of 116 to “t” ? As already mentioned, the char type is actually 
an integer value hidden behind the character. These values come from 
the ASCII (American Standard Code for Information Interchange). As 
computers can only understand numbers, each character is converted to 
a number according the ASCII. In the present case, the value of “t” in 
ASCII is 116.

So, a wrong declaration of variables, as well as a wrong initialization 
can lead to errors that may be difficult to track. Another situation that can 
easily lead to errors as careful attention must be taken is the scope of the 
variables. In general there are three places that a variable can be declared:

• Inside a function or a block, being local variables,
• In the definition of function parameters, being formal 

parameters.
• Outside of all functions, being global variables.
The examples shown before use local variables declaration. This is 

because the declaration of the variables occurred inside the function. An 
example of formal parameter declaration is:
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1 #include <iostream>
2  
3  using namespace std;
4  
5  int sum(int a, int b)
6  {
7  return a + b;
8  }
9  
10  int main()
11  {
12      int a,b,c;
13      a = 161;
14      b = 1;
15      c = sum(a,b);
16      cout << “Hello world!” << endl;
17      cout << “a = “ << a << endl;
18      cout << “b = “ << b << endl;
19      cout << “c = “ << c << endl;
20      return 0;
21  }

We declared a function, sum( ), which takes to 2 arguments, or formal 
parameters, integer a and integer b. In this case is clearly seen that the 
declaration of the variables followed the declaration of the function, with 
a defined data type. The output of this program is the same as the one 
before, with the difference that the variables are correctly initialized.

The following is an example of global variable declaration:
1 #include <iostream>
 2  
 3  using namespace std;
 4  
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 5  int c;
 6  
 7  int main()
 8  {
 9      int a,b;
10      a = 161;
11      b = 1;
12      c = a + b;
13      cout << “Hello world!” << endl;
14      cout << “a = “ << a << endl;
15      cout << “b = “ << b << endl;
16      cout << “c = “ << c << endl;
17      return 0;
18  }

In this case, the variable integer “c” is declared outside of a function, 
and any following function that uses it can do so without declaring again. 
That’s the difference between the local and the global variable.

Operators
Operators are used in C++ in the almost the same way they are used 
in mathematics, either to perform some algebraic operation, to compare 
values, to assign a value and so on. 

The following is a list of common operators for C++.

Operator Description Example

+ Adds two variables 10 + 40 will give 50

- Subtracts one variable from the other 10 - 40 will give -30

* Multiplies variables 10 * 40 will give 400

/ Divides numerator by denominator 10 / 40 will give 0.25

% Modulus Operator and remainder of after 
an integer division

10 % 40 will give 10

++ Increment operator, increases integer 
value by one

A = 10
A++ will give 11



Object-Oriented Development and Programming 67

-- Decrement operator, decreases integer 
value by one

A = 10
A-- will give 9

Relational Operators
Relational operator, as the name suggests, compare two variables and 
returns a Boolean value, either true or false. For instance, if a = 10 and 
b = 10.1 and we want to know if “a” is equal to b, the result if false. The 
following is a list of relational operators in C++. Assume that A = 10 and 
B = 10.1

Operator Description Example

== Checks if the values of two variables are equal. In 
positive case then returns true, otherwise false.

(A == B) is not 
true.

!= Checks if the values of two variables are not equal. 
In positive case (if the variables are not equal) then 
returns true, otherwise (if the variables are equal) 
than false.

(A != B) is true.

> Checks if the value to the left side of the operand is 
greater than the value to the right of the operand. In 
positive case then returns true.

(A > B) is not true.

< Checks if the value to the left side of the operand is 
smaller than the value to the right of the operand. In 
positive case then returns true.

(A < B) is true.

>= Checks if the value to the left side of the operand is 
greater than or equal to the value to the right of the 
operand. In positive case then returns true.

(A >= B) is not 
true.

<= Checks if the value to the left side of the operand is 
smaller than or equal to the value to the right of the 
operand. In positive case then returns true.

(A <= B) is true.

Logical Operators
There is a special type of relational opeators, used to compare Booleans 
(true of false values) instead of any value as in the case above. The list 
below shows some operators used in C++. Assume that A is true (1) and 
B is false (0).

Operator Description Example

&& AND operator. If both the operands are true (non-
-zero), then returns true.

(A && B) is 
false.
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|| OR Operator. If any of the two operands is true (non-
-zero), then returns true.

(A || B) is true.

! NOT Operator. If a condition is true, returns false. !(A && B) is 
true.

Assignment Operators
These operators are used to attribute a value or string to a variable, and to 
modify it, summing, subtracting, multiplying and so on.  The following 
list shows some assignment operators.

Opera-
tor

Description Example

= Values from the right side are assigned to 
the left side.

C = A + B will assign value of 
A + B toC

+= Used to add the right-side value to the left 
side AND attribute again to the left side.

C += A is the same as C = C 
+ A

-= Used to subtract the right-side value from 
the left side AND attribute again to the left 
side

C -= A is the same asC = C - A

*= Used to multiply the right-side value with 
the left side AND attribute again to the left 
side

C *= A is the same as C = C 
* A

/= Used to divide the left side value by the ri-
ght side AND attribute again to the left side

C /= A is the same as C = C / A

%= Used to get the modulus between the left 
side value and the right side AND attribute 
again to the left side

C %= A is equivalent to C = 
C % A

<<= Left shift AND assignment operator C <<= 2 is same as C = C << 2

>>= Right shift AND assignment operator C >>= 2 is same as C = C >> 2

&= Bitwise AND assignment operator C &= 2 is same as C = C & 2

^= bitwise exclusive OR and assignment 
operator

C ^= 2 is same as C = C ^ 2

|= bitwise inclusive OR and assignment 
operator

C |= 2 is same as C = C | 2

Flow Control
Flow control structure are used to run a specific section of code, only 
when some condition(s) is met. This structure can include only a single 
condition, as well as a list of options if different conditions have to be 
considered, as well as a section if any of the conditions are met. The next 



Object-Oriented Development and Programming 69

flow diagram illustrates this structure:

condition?

Conditional Code

If condition is false

Figure 25: Flow diagram.

The most simple flow control structure is the if statement. It is used 
to test one condition, and if it is true, then run some code. In case it is 
false, it just jumps over the code and continue the code from below the if 
statement block. The following is an example of this structure:
 int a,b;
 a = 10;
 b = 40;
 
 if (a > b)
 {
  cout << “a > b” << endl;
 }
 In the case above, the value of a is compared with the value of 
b using the relational operator Greater than. If it returns true, then the 
statement inside the if block (the single line with cout command) runs. 
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Otherwise, it just jumps this block and continues with the code outside it.
The if block can also be written in a more compact way as shown 

below.
if (a > b) cout << “a > b” << endl;
This type of declaration is useful for short structures, but it can 

difficult the reading for more complex programs, in which case the block 
style is preferable over the single line style.

It is possible to add a condition for the case that the relational operator 
returns false. To do that it is added a block else which just runs if the 
condition tested in the if block is false. The following is one example of 
such application:
 a = 10;
 b = 40;
 
 if (a > b)
 {
  cout << “a > b” << endl;
 }
 else // if a < = b
 {
  cout << “a <= b” << endl;
 }

In this case, the program will print the statement inside the else block 
(“a <=b”), since the condition tested returns false. Notice the comment 
used after the else keyword. Comments in such type of structures 
are always good programming practice, for they do not change the 
programming flow but provides the developer with some insight of what 
is being done in that part of the program.

It may be necessary to test not only one condition, but a set of 
conditions, and if that condition is met, then run the code inside the 
block. This is done by coupling else if blocks under the if block. An else 
block can also be used in such cases, in order to run some code if any of 
the tested conditions are met. The following code shows how to use this 
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structure.
 if (statement 1)
 {
  Code if statement 1 = TRUE
 }
 else if (statement 2)
 {
  Code if statement 2 = TRUE
 }
 else
 {
  Code if statement 1 = FALSE and statement 2 = FALSE
 }

Example
Program a simple calculator to perform the four basic algebraic operations 
(sum, subtraction, multiplication and division). To achieve that, show a 
simple menu at the beginning of the program, from where the user can 
choose one of the operations.

Solution
The following code lets the user insert the two numbers to do the 
calculations, and to choose the mathematical operation in a menu, using 
the if-else condition block.
#include <iostream>

using namespace std;
int c;
int main()
{
    double a,b;
    a = 0.0;
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 b = 0.0;
 
 int c;
 c = 0;
 
 cout << “My Calculator 0.0 !!” << endl;
 cout << “====================” << endl;
 cout << “Type the first number:” << endl;
 cin >> a >> endl;
 
 cout << “Type the second number:” << endl;
 cin >> b >> endl;
 
 cout << “Choose the operation” << endl;
 cout << “0 - Sum” << endl;
 cout << “1 - Subtract” << endl;
 cout << “2 - Multiply” << endl;
 cout << “3 - Divide” << endl;
 
 cin >> c >> endl;
 
 if ( c == 0 )
 {
  cout << a << “ + “ << b <<” = “ << a + b << endl;
 }
 else if ( c == 1 )
 {
  cout << a << “ - “ << b <<” = “ << a - b << endl;
 }
 else if ( c == 2 )
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 {
  cout << a << “ * “ << b <<” = “ << a * b << endl;
 }
 else if ( c == 3 )
 {
  cout << a << “ / “ << b <<” = “ << a / b << endl;
 }
 else
 {
  cout << “No valid option selected” << endl;
 }
    
    return 0;
}

In the way presented above, the user can perform one mathematical 
operation as the example required, but after that the program ends. If 
the user wants to continue performing calculations, he should close the 
application and start it again. That is not very practical. To avoid this, 
we can use loops, which tells the program to return to some point of the 
code wherever it reaches the bottom of the block. One example of this 
structure is the while loop block. An example of this structure is shown 
below.
while ( condition is true )
{
 code to run
}

This type of block can also generate infinite loops, i.e the code runs 
eternally, if it never reaches a condition to leave the block. For example, 
the following code:
a = 1;
while ( a == 1 )
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{
 cout << “Print line” << endl;
}

will generate an infinite loop, for the condition ( a = 1) is always true 
and do not change inside the loop. Infinite loops can be dangerous inside 
a program and may cause crashes on it, so it is advisable to always check 
if loops are never infinite.

Basic Input and Output
An input operation is the flow of information (bytes) from the user to the 
main memory (program), using either a keyboard, a disk drive, a network 
connection, etc. 

An output goes the other way around. It is a block of information 
generated by the program and displayed in a screen, recoded in memory, 
printed, etc.

C++ has a set of libraries or header files that deals with input/ output 
streams. The following table summarizes them.

Header File Function and Description

<iostream> This file defines the standard input stream, the standard output stream, the 
un-buffered standard error stream and the buffered standard error stream, 
which are the objects cin, cout, cerr and clog respectively.

<iomanip> This file declares services to use parameterized stream manipulators with 
formatted I/O, such as setw and setprecision.

<fstream> This file declares services for user-controlled file processing.

Functions
A function in mathematical terms is one or more equations or algorithms 
that generates a result given some input. For instance, the function f(x) 
= x² is a function that, given an arbitrary value x, generates the square of 
it and give it as an output. So f(1) = 1 and f(2) = 4. In a similar way, a 
function in C++ is a series of procedures that performs some task given 
some input.

The program itself is a function called main. Besides that, smaller 
pieces of code can be collected together to summarize a function. This 
is specially useful in code that is repeated throughout the program. For 
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example, suppose we need to calculate the sum of a number, than divide 
it by something and square it. To repeat the code for this procedure one or 
two times is not a big problem, but it can become inconvenient if it has to 
be done 100 times. So a function can be used to perform this operations, 
and the necessary inputs are given to it.

The following code exemplifies what is above mentioned:
#include <iostream>
using namespace std;
double function1 (double a, double b)
{
    double c;
    double d;
    c = a + b;
    d = c/10;
    return d*2.0; 
}
int main()
{
    double a,b,c;
    a = 0.0;
    b = 0.0;
    c = 0.0;

    cout << “My Calculator 0.0 !!” << endl;
    cout << “====================” << endl;
    
    for(int count=0;count<=10;count++)
    {
        c = function1(a,b);
        cout << “a = “ << a << endl;
        cout << “b = “ <<  b << endl;
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        cout << “c = “ <<  c << endl;
        cout << “count = “ <<  count << endl;
        a+=1;
        b+=1;
    }
}

The function 1 is used to repeat a series of mathematical operations 
performed inside the loop for. This same operations can be performed 
anywhere inside the program without rewriting all the operations, but 
just by calling the function1 which returns a number.

The expression
        c = function1(a,b);

Is referred to as a function call. The information sent inside the 
parenthesis are the inputs for the function. The left-hand side of the 
“equation” above is the variable that will receive the value generated by 
the function.

To perform common math operations, C++ already contains a library, 
cmath, which provides the functionality similar to a scientific calculator. 
The following table enlists some of the functions available.

Function Description
double sqrt(double x) Computes the square root of a number:

 ( )sqrt   =x x

double exp(double x) Computes the exponential of a number

 ( )exp   = xx e

double log(double x) Computes the natural logarithm of a number

 ( )log   ln=x x

double log10(double x) Computes the logarithm in a base of 10
 ( )log10   log=x x

double cos(double) Computes the cosine of a number

 ( )cos cos=x x

double sin(double) Computes the sine of a number

 ( )sin cos=x x
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double pow (double x, 
double y)

Raises the first number to the power of the second

 ( )pow    = yx x

double fabs(double x) Computes the absolute value of a number

 ( )fabs  =x x

To use this library, simply type in the header the prerogative:
#include <cmath>

C++ Modules
Modules can be defined as “boxes” of code, which can be easily shared 
by different users without the necessity of understanding the whole 
algorithm implemented on it. The only thing required is an understanding 
of the interface of for what purpose the code was developed. In this sense, 
a module can be seen as a “black box”.

A module may be a function or a set of functions defined to perform 
a task. If the module is composed by a collection of functions, one single 
function is used as in an interface, to collect all the inputs, make the 
calculations inside it using auxiliary functions and generate the necessary 
output. Suppose a module used to solve linear systems of equations of 
the following form:

Where A is a square, invertible matrix of dimensions is n x n. x  is 
the solution vector of size n and b is a column vector of size n. A module 
may be implemented, taking these values as parameters and generating 
the necessary output using a simple prototype as follows:

SolveLinearProblem (double** A, double* x, double* b, int n);
The function SolveLinearProblem receives these arguments and 

implements all the necessary functions and methods to solve the problem 
and generate as output the solution vector x . This main function, as well 
as all those secondary methods called by it are reffered to as a module. 

C++ Classes and Objects
Classes in C++ provide a series of advantages over the previously 
described modules, such as:

• Contains all the necessary functions to solve the desired 
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problem;
• The functions inside a class can not be accessed by other parts 

of a program, except through defined interfaces;
• Can not itself access other parts of the program;
• Contains all the necessary data to solve the problem.
The data associated with a class is referred to as class members, and 

the functions as methods. 
In the following example, it is defined a class of Process Data. Some 

basic attributes that each data may have are:
• A value (1, 2.8, 1e-2, etc);
• An unit (m², m/s, kg, etc)
• A date (for example a single number, 20081201 referring to the 

1st of December of 2008).
• An identification code.
These attributes are connected to each instance of a process data 

by generating the following ProcessData.hpp. Each of the attributes 
mentioned above are class members.
#include <string>
class ProcessData
{
public:
std::string unit;
double value;
int identificationnumber, date;
};

The extension .hpp is used to indicate that the file is a header file 
associated with a C++ program. The keyword public allows external 
instances to access all variables of the class. 

An usage of the class defined above is shows below. As a coding 
convention, The header file containing the class definition is enclosed 
within quotation marks, in contrast with system header files such as 
iostream, fstream and cmath with should ne enclosed with angle brackets. 
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This makes easier for the developer to distinguish between local include 
files and external ones.
#include <iostream>
#include “ProcessData.hpp”
int main (int argc, char* argv [])
{
 ProcessData distilled_flow;
 distilled_flow.identificationnumber = “F01”;
 distilled_flow.value = 10.00;
 distilled_flow.unit = “kg/s”;
 distilled_flow.date = 20170601;
 std::cout << “Distilled data” << distilled_flow.identificationnumber 
<< “obtained on ”
  << distilled_flow.date << “ is” 
  << distilled_flow.value << distilled_flow.value << “\n”;
}

Inheritance
Inheritance is defined as the ability of extending classes by implementing 
them in a “family tree”. The data and methods of a superclass can be 
implemented and extended in a subclass. And not only one, but several 
subclasses can be derived from one superclass. The concept of inheritance 
arises two complementary concepts: extensibility and polymorphism.

Extensibility is the idea that a code can be easily extended, not 
by changing the original code, but only by adding functionality to it. 
Polymorphism the ability of implementing the same functionality in a 
variety of different types of objects.

For instance, the class developed above to hold Process Data can 
be extended to hold a specific type of process data, steam process data. 
Steam has specific data such as pressure and boiling point. So basically 
two additional class members are added:

• Absolute pressure
• Boiling point



Object-oriented Modelling for Scientific Computing80

The boiling point can be obtained from the pressure.
As the Steam Process Data is derived from the generic Process Data, 

this class definition in the .hpp file must be added in the header files. 
#ifndef STEAMPROCESSDATAHEADERDEF
#define STEAMPROCESSDATAHEADERDEF
#include “ProcessData.hpp”
class SteamProcessData: public ProcessData

{
public:
SteamProcessData();
double AbsolutePressure, BoilingPoint;
};
#endif

All the public and protected members of the class ProcessData are 
available for the class SteamProcessData.

Polymorphism
Polymorphism is a highly useful feature when a variety of different 
classes are derived from one class, and for some of these classes it 
may be necessary to adapt one or more methods of the superclass. This 
redefinition can be done in C++ using the keyword virtual which defines 
methods that perform different tasks for different derived classes. The 
virtual keyword is a signal to the compiler that a method has the potential 
to be overridden by a derived class.

An example can be shown for a class developed representing a 
machine used to process some specific material. The machine refines the 
material by separating it from contaminants, obtaining in average 60% 
of the total mass of the raw material as the desired one, and the other 
40% are contaminants and some material that could not be efficiently 
processed. So, a class defining the machine is shown below.
#ifndef MACHINEDEF
#define MACHINEDEF
#include <string>
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class Machine
{
public:
std::string ID;
double RawMass;
virtual double RefineRawMaterial();
};
#endif

The virtual method RefineRawMaterial() defines the equation used 
to calculate the amount of refined material obtained from the RawMass 
amount of raw material. The RefineRawMaterial is implemented as a 
virtual method, showing that this method has a potential to be overridden 
by derived classes. The implementation of the method RefineRawMateiral 
is given below, where the amount of refined material is calculated as 60% 
of the total raw mass (40% is contaminant).
#include “Machine.hpp”
double Machine::RefineRawMaterial()
{
return RawMass * 0.6;
}

However, a special machine is able of separating more efficiently the 
same raw material, obtaining only in average 35% of contaminants in 
relation to the total mass of raw material, and the other 65% as the desired 
material. A subclass SpecialMachine can derived from the Machine class 
above.
#ifndef SPECIALMACHINEDEF
#define SPECIALMACHINEDEF
#include “Machine.hpp” 
class SpecialMachine: public Machine
{
public:
double RefineRawMaterial()
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}

Basically, the Special Machine implements the same class 
members and methods of the common machine. However, the method 
RefineRawMaterial is redefined as to calculated properly the more 
efficient separation of material as follows:
#include “SpecialMachine.hpp”
double SpecialMachine::RefineRawMaterial()
{
Return RawMass * 0.65;

}

Applications in Scientific Computing
In the following paragraphs, some literature review is given on application 
of C++ language in scientific computing using object-oriented approach. 
Specifically, we give a short review of the developed work and direct the 
reader to the article so a deeper understanding of a work can be retrieved.

Regarding programming language derived from C++, Kale & 
Krishnan (1993) developed Charm++, an explicit parallel object-
oriented programming language, also extensible. The special features of 
the developed language involve multiple inheritance, dynamic binding, 
overloading, strong typing, and reuse for parallel objects. Charm++ 
provides. Specific modes for sharing information between parallel objects 
and extensive dynamic load balancing strategies are provided. 

In 1993, Dubois Pe`lerin & Zimmermann developed an efficient 
object-oriented finite element programming in C++. The developed 
algorithm is extensive and because of that it is divided in different 
companions. The first one describes the governing principles of object-
oriented finite element programming. The second companion described a 
prototype implementation written in Smalltalk, which proved that object-
oriented programming is adequate for the design of easily maintainable 
software. In the third and last article, numerical efficiency is analyzed. 
The authors showed that achieved performance is comparable with 
Fortran.
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Regarding applications in Bioinformatics, Thorthon (2003) developed 
a C++ library for evolutionary genetic analysis called libsequence. The 
library implements methods for data manipulation and the calculation 
of several statistics commonly used to analyze SNP data. The object-
oriented design of the library is intended to be extensible, allowing users 
to design custom classes for their own needs. In addition, routines are 
provided to process samples generated by a widely used coalescent 
simulation.

Jasak et al. (2004) developed a C++ object-oriented toolkit called 
FOAM, a software designed to facilitate research in physical modelling, 
by mimicking in the code the continuum mechanics equations of the 
physical model. With this feature, it can handle separately physics from 
numerical discretization techniques. The authors explored the limitations 
of the toolkit applying it in the investigation of two in-cylinder combustion 
simulations.

Vukics & Ritsch (2007) created a framework for efficiently performing 
Monte Carlo wave-function simulations in cavity QED with moving 
particles. The developed framework uses object-oriented approach in in 
C++, with features such as extensibility and applicability for simulating 
open interacting quantum dynamics in general. The user is provided 
with several “elements”, eg pumped moving particles, pumped lossy 
cavity modes, and various interactions to compose complex interacting 
systems, which contain several particles moving in electromagnetic 
fields of various configurations, and perform wave-function simulations 
on such systems. A  great number of tools are provided to facilitate the 
implementation of new elements.

Heat transfer using object-oriented approach in C++ was investigated 
by Mangani et al. (2007) in the article “Development and validation of a 
c++ object oriented cfd code for heat transfer analysis”. The code is based 
on the Field Operation and Manipulation C++ class library for continuum 
mechanics (OpenFOAM). The accuracy of the implementations was 
validate comparing results with experimental data available both from 
standard literature test cases and from in house performed experiments.

Ferrari et al (2016) developed an object-oriented library called 
LibHalfSpace C++ to evaluate the deformation and stress in elastic half-
spaces. The study of such elastic half-spaces is employed in different 
areas, such as didactic, inversion of geodetic data. A collection of well-
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known models (Mogie source, penny shaped horizontal crack) are 
implemented in order to define the potential usage and the flexibility of 
the library.

MATLAB
MATLAB is a mixture of software package and programming language 
that allows the user to do mathematics and computation, to analyze data, 
develop algorithms, model real and simulate different types of models, 
producing graphical visualization and graphical user interface.

This chapter gives a short introduction to Matlab, for to who are not 
very familiar with this programming language and tool. Following the 
introduction, it is presented how object-oriented concepts are expressed 
in Matlab, as well how to use object-oriented concepts to solve simple 
problems.

It is assumed that the user has either the student edition of Matlab 
R2014b or newer, or a professional version. Before reading this chapter, 
the reader should set up the MATLAB software on the computer and start 
the application.

To run MATLAB in a PC, simply click in the MATLAB icon, either 
on the desktop or in the start menu. On a UNIX system, simply type 
matlab at the prompt.

When MATLAB starts, it shows two greather-than signs (>>) when it 
is ready to accept any command from the user. The program can be ended 
by typing quit or exit at the MATLAB prompt.

To easily reach help information, simply type one of the following 
commands:

help Help on the meaning of a command. It provides a 
precise explanation of commands. 

helpwin Opens a MATLAB help GUI
doc the same as helpwin (helpwin will be removed in 

future versions)
helpdesk Opens a hypertext help browser
demo Opens a GUI with a list of demos

Below are some useful commands to have at hand:
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Version: To know which version of MATLAB are you running, type:
>> version

What: This command lists the .m, .mat and .mex files in the current 
working directory. The command can also be used to list the files in 
another directory, if the path of this directory is provided as second 
argument. For example, the command
>> what general

Provides a list of files in the directory general inside MATLAB path.
Who:  provides a list of variables in the current workspace. Whos 

lists additional information about the variables. Who global and whos 
global list the variables in the global workspace.

For example, the following list of commands creates a variable with 
value one (1) and use the command who to see information about it:
>> a = 1;
>> who a

Your variables are:
a  
>> whos a
  Name      Size            Bytes  Class     Attributes
  a         1x1                 8  double              

Clock: This command is used to print (or store) the current system 
time. The first number provided is a multiplier. The following numbers 
are [year, month, day, hour, minute, second]. For example:
>> clock
ans =
   1.0e+03 *
    2.0170    0.0070    0.0110    0.0120    0.0460    0.0316

Matlab Primer

Basic commands and arithmetic
Once the user have started MATLAB, the software opens with its default 
layout, as shown below:
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Figure 26: MATLAB default window.

The desktop is divided into three main panels:
Current Folder – shows the files existent on the current folder.
Command window – the place where the user can do calculations and 

issue commands at the prompt (>>).
Workspace – lists the variables created or imported from files.
A variable can be created by typing a name to it, the equal sign and a 

value. For instance:
>> a = 1

Creates a variable a and attributes the value 1 to it. Mathematical 
operations can be directly performed using number or variables, or a mix 
of them. If the user wants to perform the sum 1+1, it can be performed 
in different ways:
>> a + a
ans =
     2
>> a + 1
ans =
     2
>> 1 + 1
ans =
     2
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In MATLAB, the result of a command in the prompt is stored in the 
variable ans, so it changes wherever a new command is issued. In the 
above case, as the value of a is 1, the sum can be performed either by 
summing a with a, by summing a with 1 or the natural way of 1 + 1.

The following table shows a list of valid mathematical operators 
in MATLAB: The symbol in parenthesis can be used in place of the 
command. For example, the command 1 + 1 is equivalent to plus(1,1).

plus (+) Addition
uplus Unary plus
minus (-) Subtraction
uminus Unary minus
times (.*) Element-wise multiplication
rdivide (./) Right array division
ldivide (.\) Left array division
power (.^) Element-wise power
mtimes (*) Matrix Multiplication
mrdivide (/) Solve systems of linear equations xA = B for x
mldivide (\) Solve systems of linear equations Ax = B for x
mpower (^) Matrix power

Different operators can be used in the same command to perform a 
complex arithmetic operator, as in the following command:
>> 1+2.*4-3.^2
ans =
     0

The above calculation also shows the MATLAB respects the 
arithmetic order of operations (first power, than multiplication or division 
and lastly addition or subtraction). The number can also be grouped 
using parenthesis, so as to specify the order of the calculation, as in the 
following example:
>> (1+2).*4-3.^2
ans =
     3
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Matrices and Arrays
MATLAB was primarily developed to work on whole matrices and arrays, 
instead of a number at a time. This means that all MATLAB variables are 
multidimensional arrays, no matter what type of data. A matrix is a two-
dimensional array often used for linear algebra.An array can be created 
by using square brackets and separating each number with a comma or 
space. This type of array is a row vector.
>> a = [0, 1, 2, 3]
a =
     0     1     2     3

Another way of creating the same array vector is to use the linspace 
command or the colon operator. The linspace command and the colon 
operators are used to create equally spaced elements in the row vector. 
In this sense, the above array can be recreated using the following 
commands:
>> a = linspace(0,3,4)
a =
     0     1     2     3
>> a = 0:1:3
a =
     0     1     2     3

The command linspace(x,y,z) creates a row vector starting at x, 
ending at y with z equally spaced elements. The command x:dx:y creates 
a row vector starting at x, ending at y with dx step between each value.

To create a matrix with multiple rows, separate the rows using 
semicolons.
>> a = [0, 1, 2, 3; 5, 6, 7, 8; 9, 10, 11, 12]
a =
     0     1     2     3
     5     6     7     8
     9    10    11    12
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Special commands can be used to directly create special arrays or 
matrices. The command eye(x,y)  creates an identity matrix with x rows 
and y columns.
>> eye(2,3)
ans =
     1     0     0
     0     1     0

The command ones(x,y) or zeros(x,y) can be used matrixes of ones or 
zeros, respectively with dimension of x rows and y columns.
>> ones(2,3)
ans =
     1     1     1
     1     1     1 

Operations can be directly performed in a matrix, using the arithmetic 
operators presented above. For example, to sum a value of 10 to each 
value in a matrix of zeros:
>> b = zeros (2,3)
b =
     0     0     0
     0     0     0
>> c = b + 10
c =
    10    10    10
    10    10    10

It is also possible to perform summation of two matrixes of the same 
dimension, in which case each element of the matrix will be summed 
accordingly:
>> b = eye(2,3)
b =
     1     0     0
     0     1     0
>> c = [1 2 3; 4 5 6]
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c =
     1     2     3
     4     5     6
>> d = b + c
d =
     2     2     3
     4     6     6
Suppose that the desired matrix has 6 rows as a repetition of the first two 
rows. The user would have to type each number in a very inefficient way. 
For this case, the command repmat can be used to replicate the matrix. 
The command repmat(x,y,z) replicates the matrix x, y times in the row 
direction and z times in the column direction.
>> a = [0:1:3;1:1:4]
a =
     0     1     2     3
     1     2     3     4
>> b = repmat(a,3,1)
b =
     0     1     2     3
     1     2     3     4
     0     1     2     3
     1     2     3     4
     0     1     2     3
     1     2     3     4
Individual elements in a matrix can be referred to using subscripting. 
Each element is denoted by a row index and column index respectively. 
Suppose the user wants to obtain the element in the 3rd row and the 4th 
column:
>> b(3,4)
ans =
     3
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Indexes can also be used to obtain multiple elements. For example, to 
extract the elements in the 3rd row, and columns 3 and 4:
>> b(3,[3 4])
ans =
     2     3

The operator semicolon ( : ) can be used to obtain all the elements of 
the row / column.
>> b(:,[3 4])
ans =
     2     3
     3     4
     2     3
     3     4
     2     3
     3     4

In the example above, the semicolon was used as row index, to obtain 
the elements of the matrix b in all the rows, in the columns 3 and 4.

Alternatively, a single index can be used to obtain an element of 
matrix. MATLAB counts the index down successive columns.

Typing in MATLAB
The following table shows a list of commands that can be used to save 
time when typing. If the user wants to repeat a long line typed before, he 
can use the arrow keys to repeat the same command:

↑ ctrl - p Recall previous line
↓ ctrl - n Recall next line
← ctrl - b Move back one character
→ ctrl – f Move forward one character
ctrl - → ctrl – r Move right one word
ctrl - ← ctrl – l Move left one word
home ctrl – a Move to the beginning of the line
end ctrl – e Move to end of the line
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esc ctrl – u Clear line
del ctrl – d Delete character at cursor
backspace ctrl – h Delete character before cursor

ctrl – k Delete to end of line

Saving and Loading of data
The command save can be used to save all the variables present in the 
workspace. The following code shows that MATLAB creates a file called 
matlab.mat, and inside the file it can be found the variables present in the 
workspace, in this case the variables a and b.
>> a = 1
a =
     1
>> b = 2
b =
     2
>> save

Saving to: …..\matlab.mat
Alternatively, an additional argument can be used with the command 

save to specify the name of the file.
>> save filename

If more arguments are provided, they specify which variables are to 
be saved. In the following example, just the variables a and b are saved 
in the file my_variables:
>> save my_variables a b

The variables are saved with double precision binary. To load the 
variables from the file, simply type:
>> load my_variables
If it is necessary to save the variables in asci format, the user must add 
the argument “-ascii” when saving the file, also specifying the extension 
of the file name, as in the following example:
>> save my_variables.dat a b -ascii
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Saves the variables in 8-digit asci to the file named my_variables.dat. 
By opening this file, it looks like:
   1.0000000e+00
   2.0000000e+00

Matlab Classes and Objects
In MATLAB, numbers, strings, arrays or any other type of variable is an 
object of an appropriate class. For instance:
>> b = 10;
>> c = ‘Hello World’;
>> d = [1 2 3];
>> s.data = 1;
>> whos
  Name      Size            Bytes  Class     Attributes
  b         1x1                 8  double              
  c         1x11               22  char                
  d         1x3                24  double              
  s         1x1               184  struct              

MATLAB has predefined classes, and user- defined classes. Pre-
defined classes are basic classes used in MATLAB language. User-
defined classes are those classes developed by users for perform desired 
operations, which can “replace” basic operations, change them or perform 
any type of task required by the user. This replacement is called overload.

There are hey terms in object-oriented programming in MATLAB, 
used to define the classes and related concepts, which are (MATHWORKS, 
2017).

Class definition — Description of what is common to every instance 
of a class.

Properties — Data storage for class instances.
Methods — Special functions that implement operations that are 

usually performed only on instances of the class.
Events — Messages defined by classes and broadcast by class 

instances when some specific action occurs.
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Attributes — Values that modify the behavior of properties, methods, 
events, and classes.

Listeners — Objects that respond to a specific event by executing a 
callback function when the event notice is broadcast.

Objects — Instances of classes, which contain actual data values 
stored in the objects’ properties.

Subclasses — Classes that are derived from other classes and that 
inherit the methods, properties, and events from those classes (subclasses 
facilitate the reuse of code defined in the superclass from which they are 
derived).

Superclasses — Classes that are used as a basis for the creation of 
more specifically defined classes (that is, subclasses).

Packages — Folders that define a scope for class and function naming.

How classes are defined

Definition of classes in files
Classes in MATLAB can be defined in a similar way that functions or 
scripts are defined, using .m files. The name of the file must be the same 
as the name of the class followed by a .m extension.

A second option is to define classes in folders, instead of a single file. 
This type of class definitions is specially useful for long and complicated 
classes, with many properties and methods. There are two basic ways of 
creating folders that contains class definitions:

Path folder – a folder inside MATLAB path.
Class folder – besides being inside a folder in MATLAB path, the 

folder name starts with an @ character followed by the class name, as in:
@BasicClass
If the class is defined in the last way, a file must be dedicated to the 

class definition, and other files incorporate methods and properties of the 
class.
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Class definition block
The “classdef” block is the MATLAB instruction containing the class 
on the beginning of the file, and starting with the keyword “classdef”, 
terminating with the “end” keyword.
classdef (ClassAttributes) ClassName < SuperClass
…
end

For instance, the following example is a sealed class named 
SecondClass that inherits from the FirstClass class. The sealed attributed 
means that other classes can not be derived from this class.
classdef (Sealed) SecondClass < FirstClass
…
end

Properties block
Data and attributes of the class are stored in the properties of it, defined 
in the properties block. There is one block of properties for each set 
of attribute specifications. The defined attributes and data can also 
incorporate initial data values. The properties block starts with the 
keyword “properties” and terminates with the “end” keyword.
properties (PropertyAttributes)
…
end

In the following example, a set of private properties (data only 
accessible by the class methods) is defined and a default value is given to 
“firstproperty”. A second set of property is also defined without special 
attributes (public by default) with a property “publicproperty” created 
without a default value.
properties (Access = Private)
 firstproperty = 0;
end
properties
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 secondproperty;
end

Methods block
Functions and tasks performed by the class are defined in method blocks, 
one for each set of attribute specifications. This block starts with the 
keyword “methods” and ends with the keyword “end”.
methods (MethodAttributes)
…
end

The following example illustrates a public method (no argument is 
necessary by default) block with a function used to perform an arithmetic 
operation on the properties of the class.
methods
function obj = maths(obj)

obj.Prop3 = obj.Prop1 + obj.Prop2;

end

end

Events block
Events block are defined according a unique set of attribute specifications, 
and they contain the names of the events triggered in the body of the 
class. The event block starts with the keyword “event” and terminates 
with the keyword “end”.
events (EventAttributes)
…
end

The following is an example of a block of protected events with two 
events, “StateChange” and “NegativeValue”.
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events (ListenAccess = protected)
 StateChange
 NegativeValue
end

Class Attributes
As mentioned earlier, classes may possess special attributes, declared in 
the “classdef” block, before stating the name of the class. 
classdef (Attribute1 – value1, Attribute2 – value2,…) ClassName

The following is a list of valid class attributes for MATLAB (MATHWORKS, 
2017).

Attribute Name Class Description
Abstract Logical An Abstract class can not be 

instantiated.
AllowedSubclasses meta.class object or 

cell array of meta.
class objects

Specify subclasses as meta.class 
objects that can subclass this 
class. In the case of multiple 
meta.class objects, use a cell 
array {}. An empty array is the 
same as a Sealed class.

ConstrutOnLoad Logical If true, the object is constructed 
when MATLAB loads the object 
from a MAT-file. The construc-
tor should be implemented so 
it can have no error if called 
without arguments.

HandleCompatible Logical If true, the class can be used as a 
superclass for handle classes.

Hidden Logical The class does not appear in the 
output of the superclasses or 
help functions.

InferiorClasses meta.class object or 
a cell array of meta.
class objects

This attribute is used to esta-
blish a relationship of preceden-
ce among classes.

Sealed Logical If true, the class can not be 
subclassed.
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Property Attributes
Attributes can be specified to define the behavior of different properties 
in a class. These customizations can be set up to define control access, 
data storage or visibility of property. An important aspect to mention is 
the fact that subclasses do not inherit the superclass member attributes.

The properties attributes, as mentioned earlier, are declared in the 
header of the property block, following the keyword “property”. 
properties (Attribute1 – value1, Attribute2 – value2,…)
…
end

The following points shows the valid attributes to all properties defined 
inside the block that specifies that attributed (MATHWORKS, 2017). 
The values inside parenthesis are the default values for the attribute, in 
case it is not specifically changed in the way described above.

Attribute: AbortSet
Class: Logical (false)
Description: In case it is true, MATLAB does not call the set method 

for the specified attributed if the same value that was already attributed 
is the new value ..

For handle classes, setting this attribute to true also avoid the call of 
PreSet and PostSet events.

Attribute: Abstract
Class: Logical (false)
Description: In case it is true, the property has no implementation, 

and a concrete subclass must redefine the property with the Abstract 
attribute set to false.

Additionally, abstract properties has special characteristics such as:
• They can not define set or get methods.
• They can not define initial values.
• The derived classes must define the same values as the super 

class for the SetAccess and GetAcess attributes.
Attribute:  Access
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Class: enumeration (public), meta.class object or cell array of meta.
class objects.

Description: If it is set to public, any other class, superclass, subclass 
or object may have unrestricted access.

If it is set to protected, only classes and subclasses may have access 
to the property.

In the case it is private, then only class members are allowed to access 
the property.

Attribute: Constant
Class: logical (false)
Description: Fixes the value of a property for all instances (objects) 

of the class if this attribute is set to true. Special features of this attribute 
are:

Subclasses which inherits constant attributes cannot change them.
Constant properties cannot be Dependent.
SetAccess is ignored.
Attribute: Dependent
Class: logical (false)
Description: It can spare memory by not saving the property value, in 

case it is set to true. The set and get functions cannot access the property 
by indexation through the property name. This attribute is useful to 
calculate data on demand.

Attribute: GetAcess
Class: enumeration (public)
Description: A list of classes that have access to the property. Can 

be set to:
Public: Anything can access the property.
Protected: Only classes and subclasses can access the property.
Private: Access to the property is only allowed by class members 

(not from other classes or subclasses).
The attribute defines the classes that have get access to the listed 

properties. The classes may be specified as meta.class objects.
Attribute: GetObservable
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Class: logical (false)
Description: This attribute allows the creation of listeners to access 

the listed properties, in case it is set to true. The listeners are called 
whenever property values are queried.

Attribute: Hidden
Class: logical (false)
Description: The attribute defines if the listed properties can be 

shown in a property list, as the Property Inspector, calls to set or get, etc. 
In this sense, hidden properties are not displayed by MATLAB in the 
command window, nor the value or the name of it.

Attribute: NonCopyable
Class: logical (false)
Description: The attribute determines if a property is copied if an 

instance of the class is copied. NonCopyable attribute can only be set to 
true in handle classes.

Attribute: SetAccess
Class: enumeration (public)
Description: Can be defined as:
• Public: Anyone have access to the listed properties.
• Protected: Access is permitted only by classes and subclasses 

(no functions or user).
• Private: Access to the listed properties is only permitted by 

class members (no subclasses or other classes).
• Immutable – The listed properties can only be set inside the 

constructor function.
This attribute is used to list the classes that have set access to the 

listed properties in the block. Classes should be specified as a single 
meta.class object or a cell array of meta.class objects.

An empty cell array {} of meta.class objects is the same as defining 
private access value to this attribute.

Attribute: SetObservable
Class: logical (false)
Description: If it is true and it is a handle class property, then listeners 
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can be created to access the listed properties, wherever such properties 
are modified.

Attribute: Transient
Class: logical (false)
Description: This attribute specifies which properties are not to be 

saved when an instance of the class is saved to a file.

Methods Attributes
The behavior of methods can be changed by defining specific attributes to 
them. Such attributes change how access, visibility and implementation 
behaves during the lifetime of an instance of the class.

The attributes are specified in the methods block, after the keyword 
“methods”.
methods (Attribute1 – value1, Attribute2 – value2,…)
…
end
The supported method attributes are mentioned below, and should be 
inserted in the class code according the convention referred above.

Attribute: Abstract
Class: logical (false)
Description: Methods with this attribute have no implementation, but 

subclasses can use the line containing arguments when implementing the 
method. Such subclasses do not need to necessarily implement the same 
number of input and output arguments, although it is recommended to use 
the same signature when implementing the abstract method. The method 
does not have the function or end keywords, rather only the function 
syntax, e.g [x,y] = AbstractFunction(a,b).

Attribute: Access
Class: enumeration (public)
Description: This attribute defines what code can call the listed 

method:
Public: Unrestricted access.
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Protected: Method can only be accessed in classes or subclasses.
Private: Method is only accessible inside the own class members.
Optionally, a list of classes who can access the method can be 

provided. This are meta.class objects, listed using cell array. An empty 
cell array {} is the same as private access.

Attribute: Hidden
Class: logical (false)
Description: If the hidden attribute is false, the listed methods are 

shown using the methods or methodsview commands in MATLAB. The 
methods can be hidden from the user or any other object trying to observe 
the methods by setting this attribute to true. In this case, the methods will 
not be listed when using the commands referred above, and the command 
is method does not return true for the hidden method.

Attribute: Sealed
Class: logical (false)
Description: The attribute fixes the method, in the sense that it 

cannot be redefined by a subclass. Attempting to do so causes an error in 
the subclass.

Attribute: Static
Class: logical (false)
Description: A static method does not depend on an instance of the 

class and naturally does not need an object argument.

Typical Workflow to Develop Classes

Defining a Class
This section introduces how to develop a class to represent a familiar 
concept in scientific computing. The concept worked on is a generic 
storage box (could be a water tank, a boiler, distillation column, an ant 
colony, etc), used to store any generic material (or concept, in the most 
abstract sense).

The first step is to define the elements and the operations that forms 
the abstract storage box. For example, a storage box has:

• An ID (Identification Number), so the user knows to which 
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StorageBox object he is referring to specifically.
• An amount of thing inside (balance)
• Optionally a status (full, empty, open, closed, etc)
A list of different operations can be performed in the storage box, 

such as:
• Create an object for each storage box
• Add things
• Remove things
• Display the status of the box
• Save and load the StorageBox object
The StorageBox object will have an option that, if the user tries 

to remove things when it is already empty, it issues a notice to other 
elements that are designated to listen these notices. An Operator object 
will be designed to perform this operation over the StorageBox. He will 
determine the status of the StorageBox, assigning one of the following 
values:

• Full – StorageBox balance has 100 of things.
• Empty - StorageBox balance does not have things (0).
• Open - StorageBox balance has positive value of things.
With these features clear, the properties and methods of the objects 

StorageBox and Operator are clearly defined. It is recommended to only 
include functionality that meets the requirements or specific objectives of 
the program. For instance, if the StorageBox never really gets full, there 
is no reason to implement the status “Full” to it. The developed classes 
always should have room to be upgraded, so new functionalities can be 
added according the demand.

Specify Class Components
Some formal names have to be used in order to identify the properties 
that will store each data of the StorageBox. In the present case, we define 
the following properties:

• IdentificationNumber: This property is used to store an 
identification of the StorageBox object. MATLAB assigns a 
value to this property when you create an instance of the class. 
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Only StorageBox class methods can set this property. The 
SetAccess attribute is private.

• Balance: This property stores the current amount of “thing” 
inside the StorageBox (can be water, heat, ants, or whatever 
is being studied). The operation of insert or remove assigns 
values to this property. Only StorageBox class methods can set 
this property. The SetAccess attribute is private.

• Status — The StorageBox class defines a default value for 
this property. The Operator class methods change this value 
whenever the value of the Balance falls below 0 or rises above 
100. The Access attribute specifies that only the Operator and 
StorageBox classes have access to this property.

• BoxListener — Storage for the NegativeAmount and 
OverflowedAmount event listener. Saving a StorageBox 
object does not save this property because you must recreate 
the listener when loading the object.

The operations performed by/at the StorageBox class are:
• StorageBox: Acceps an identification number and an initial 

balance to create an object that represents a storage box.
• insert: updates the StorageBox object balance by adding the 

specified amount of things.
• remove: updates the StorageBox object balance by removing 

the specified amount of things.
• getStatement: Displays information about the storage box.
• loadobj: Recreates the operator listener when you load the 

object from a MAT-file.
The events are triggered by the operator inside the methods of the 

class. In the present case, the StorageBox class triggers an event when 
the removal of things of the box results in NegativeAmount balance. 
Therefore, the NegativeAmount event occurs inside the remove method.

On the same principle, the StorageBox class triggers an event when 
the addition of things on the box results in OverflowedAmount balance. 
Therefore, the OverflowedAmount event occurs inside the insert method.

The definition of events is done inside an events block. The notify 
handle class method is responsible of triggering the event. 
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StorageBox Class Implementation
The StorageBox class should have only one set of data associated with 
one object. To do that, the StorageBox class has to be implemented as 
a handle class, as explained in MATHWORKS (2017). All copies of a 
given handle object refer to the same data. In this way, it is possible to 
generate different references to the same StorageBox, without creating 
duplicates or unlinked copies of the same object.

The StorageBox class can be created in a single .m file, as shown 
below. Each section of the code is explained using MATLAB comments 
(every line of text that starts with a “%”).

StorageBox.m
classdef StorageBox < handle 
    % STORAGEBOX inhherits from handle class
    % because it is allowed only one copy of 
    % each box.
    
    properties (Access = ?Operator)
        Status = ‘open’
        % The status is determined by the current balance.
        % Access is limited to the StorageBox class and the
        % Operator class
    end
    
    properties (SetAccess = private)
        IdentificationNumber
        Balance
    end
    
    properties (Transient)
        BoxListener
    end
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    events
        NegativeAmount
        OverflowedAmount
    end
 
    
    methods
        function obj = StorageBox(ID,InitialBalance)
            % Constructor method for StorageBox
            obj.IdentificationNumber = ID;
            obj.Balance = InitialBalance;
            obj.BoxListener = Operator.addBox(obj);
        end
        
        function insert(obj,amt)
            % Adds an amount amt to the balance of the
            % StorageBox obj.
            if obj.Balance > 100
                disp([‘Box ‘,num2str(obj.IdentificationNumber),...
                ‘ is full.’])
                return
            end
            newbal = obj.Balance + amt;
            obj.Balance = newbal;
            if newbal > 0
                obj.Status = ‘open’;
            end
            if newbal > 100
                notify(obj,’OverflowedAmount’)
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            end
        end
         
        function remove(obj,amt)
            % Removes an amount amt to the balance of the
            % StorageBox obj.
            if (strcmp(obj.Status,’closed’)&& ...
            obj.Balance < 0)
                disp([‘Box ‘,num2str(obj.IdentificationNumber),...
                ‘ has been closed.’])
                return
            end
            newbal = obj.Balance - amt;
            obj.Balance = newbal;
            if newbal < 0
                notify(obj,’NegativeAmount’)
            end
        end
 
         function getStatement(obj)
             % Generates a short statement of the StorageBox.
             disp(‘-------------------------’)
             disp([‘Box: ‘,num2str(obj.IdentificationNumber)])
             bal = sprintf(‘%0.2f’,obj.Balance);
             disp([‘CurrentBalance: ‘,bal])
             disp([‘Box Status: ‘,obj.Status])
             disp(‘-------------------------’)
         end
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    end % of methods
    
    methods (Static)
        
    function obj = loadobj(s)
        % function used to regenerate the obj from a file.
        if isstruct(s)
            id = s.IdentificationNumber;
            initBal = s.Balance;
            obj = StorageBox(id,initBal);
        else
            obj.BoxListener = Operator.addBox(s);
        end
    end
    
    end % of methods (Static)
end

Operator Class Implementation
The Operator is a class used to provide services to the StorageBox class. It 
is responsible for listening to insertions and removals in the StorageBox, 
also to attribute a status according the current balance of the box. When 
the StorageBox triggers the NegativeAmount or the OverflowedAmount 
events, the Operator resets the StorageBox status.

Because the Operator class has no data, it has no properties. The 
StorageBox object stores the handle of the listener object.

The Operator class performs two operations:
• Assign a status to each box as a result of a removal or a insertion 

of things 
• Adds a box to the system
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Operator Class Components
Basically, the Operator class performs two methods:
assignStatus — Method that assigns a status to a StorageBox object. 
Serves as the listener callback.
addBox — Method that creates the NegativeAmount and the 
OverflowedAmount listeners.

The Operator class can be created in a single .m file, as shown below. 
Each section of the code is explained using MATLAB comments (every 
line of text that starts with a “%”).
classdef Operator
    
    methods (Static)
    
        function assignStatus(obj)
            if obj.Balance < 0
                if obj.Balance < -200
                    obj.Status = ‘closed’;
                else
                obj.Status = ‘overdrawn’;
                end
            end
            if obj.Balance > 100
                obj.Status = ‘overflowed’;
            end
        end
        
        function lh = addBox(obj)
            lh = addlistener(obj, ‘NegativeAmount’, ...
            @(src, ~)Operator.assignStatus(src));
            lh = addlistener(obj, ‘OverflowedAmount’, ...
            @(src, ~)Operator.assignStatus(src));
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        end
        
    end
end

Using the StorageBox class
The intent of this subsection is to demonstrate how MATLAB classes 
behave, by creating and manipulating a StorageBox object. First, create 
a box with ID “B01”and initial balance of 50 things.
>> BA = StorageBox(‘B01’,50)
BA = 
  StorageBox with properties:
    IdentificationNumber: ‘B01’
                 Balance: 50
             BoxListener: [1x1 event.listener]
Remove 10 things of the box and check the status:
>> remove(BA,10)
>> getStatement(BA)
-------------------------
Box: B01
CurrentBalance: 40.00
Box Status: open
-------------------------

In order to test the change in the status of the BOX, remove the 
remaining 40 + 1 things in the Box and check the status again.
>> remove(BA,41)
>> getStatement(BA)
-------------------------
Box: B01
CurrentBalance: -1.00
Box Status: overdrawn
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-------------------------
Because the balance in the box became negative, the Operator 

changed the status of the box to “overdrawn”, so from now on every 
method that checks on the status of the box will know that the balance is 
a negative value. To check if the Operator is correctly closing the box if 
the balance reaches values below -200, remove 200 things of the box and 
check the status.
>> remove(BA,200)
>> getStatement(BA)
-------------------------
Box: B01
CurrentBalance: -201.00
Box Status: closed
-------------------------

It can be seen that the status of the box was correctly set to “closed”, 
which means that no more things can be removed from the box. To check 
if this implementation is correct, try to remove one thing from the box 
and check the status again.
>> remove(BA,1)
Box B01 has been closed.
>> getStatement(BA)
-------------------------
Box: B01
CurrentBalance: -201.00
Box Status: closed
-------------------------

When we try to remove one thing from the box now, it generates 
a message noticing that the box is closed, so the balance should not 
change. This can be checked as above, by generating the statement again 
and observing that the balance is the same as before trying to remove one 
more thing. The box can be reopened by adding enough things so as the 
balance becomes positive again. To do so, add 202 things in the box and 
check the status.
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>> getStatement(BA)
-------------------------
Box: B01
CurrentBalance: 1.00
Box Status: open
-------------------------

It can be observed that the operator correctly changed the status of 
the box back to open, since the balance indicates that there is one (1) 
positive thing.

Other classes can be derived from this former StorageBox class, to 
represent specific volume elements, with additional properties such as the 
dimensions of the box, some internal dynamics in the box (e.g chemical 
reaction of animal reproduction) and any other property or method that 
may be of interest to the developer of the class.

An Example: The “Diffusive” Storage Box network
In this section, we will improve the developed StorageBox by 
implementing a system with connected storage boxes that can interact 
with one another. Suppose a simple network of three generic storage 
boxes (may be water tanks, storage facilities, ant colonies, etc) connected 
as the following figure

Figure 27: Simple storage boxes network.

Each box has an initial amount of generic things. Suppose box B01 
has 100 things, B02 and B03 has 50 things. We may suppose that there 
are connections between the box B01 and B02, and B01 and B03. In 
these connections, the things are transferred from one box to another 
following a diffusive rule, which means:
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( )   *  = −right leftFlux Constant Box Box

Where Flux is the number of things that are transferred from the 
box with more things to the box with less things. The Flux is linearly 
proportional to the difference of amount of things in the Box, which 
means that the higher the difference of things in the connected boxes, the 
higher the flux of things.

In order to evaluate how material is transferred from one box to the 
other, it is necessary to simulate the system for some steps, and record the 
number of things in the boxes at each time step, as well as the fluxes of 
things. For the moment, it is assumed a discrete system, so time will not 
be incorporated to the system.

This simple example could be implemented in a spreadsheet such 
as Microsoft Excel ®. Supposing that the constant of the connector P01 
is equal to 0.1, and the constant of the connector P02 is equal 0.2. The 
simulation of 10 steps results in the following table:

step B01 B02 B03 P01 P02
1 100 50 50 5 10
2 85 55 60 3 5
3 77 58 65 1.9 2.4
4 72.7 59.9 67.4 1.28 1.06
5 70.36 61.18 68.46 0.918 0.38
6 69.062 62.098 68.84 0.6964 0.0444
7 68.3212 62.7944 68.8844 0.55268 -0.11264
8 67.88116 63.34708 68.77176 0.453408 -0.17812
9 67.60587 63.80049 68.59364 0.380538 -0.19755
10 67.42289 64.18103 68.39609 0.324186 -0.19464

The following figure illustrates the results for the balances of the 
boxes and for the fluxes. It can be seen, as expected for a diffusive system, 
that the amount of things in each box converges to the same value, that 
is, given enough time of simulation, all of the boxes will have the same 
amount of things, independently of the initial condition.

Regarding the fluxes, it reduces progressively as the difference 
between the balances of the boxes reduce, until it converges to zero, 
given enough simulation time.
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Figure 28: Balance of the three boxes network.

Figure 29: Fluxes of the three boxes network.

As mentioned before, the implementation of such problem in a 
spreadsheet is simple. However, a more complicated network with 
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hundreds of boxes and connections may make this type of implementation 
unfeasible. That is the reason why it is exemplified here this network in 
MATLAB using object-oriented approach.

The StorageBox classes were developed earlier in this chapter, and 
it will not be changed. The connections are also a class that stores what 
is the box to the right and what is the box to the left, and it calculates the 
flux according the equation showed above.

The Pin class is the name that will be used to implement the connectors 
of boxes. It most store some information, which is:

• Prev: stores what box is to the left of the connector.
• Next: stores what box is to the right of the connector.
• Const: Is the constant used to calculate the flux. Can be any 

positive value. However, very high values may cause unstable 
fluxes for this discrete approach. For instance, if the initial 
balance of the box to the left is 100 and the box to the right 0, 
using a constant of 10. The initial flux will be equal to

( )10* 100 0 1000= − =Flux

So, the initial flux will be equal 1000 things, which means that 1000 
things will be removed from the box with more things (right one with 
100 things) generating a balance of -900 things!

• Flow: Used to store the calculate flow according the equation 
mentioned above.

The methods to be implemented in the Pin class are:
• Pin: the constructor method, used to create the object.
• equation: the method that calculates the flux.
The implementation of the Pin class is done in a single .m file Pin.m, 

as follows:
classdef Pin < handle
    % Pin class used to connect Boxes
       
    properties (SetAccess = private)
        Prev % stores the box to the left
        Next % stores the box to the right
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        Const % proportional constant of the flux
        Flow
    end
       
    methods
        function obj = Pin(Input,Output,Const)
            % Constructor method
            obj.Prev = Input;
            obj.Next = Output;
            obj.Const = Const;
            obj.Flow = obj.Const.*(obj.Prev.Balance - obj.Next.Balance);
        end
        
        function equation(obj)
            % Method used to calculate the flow
            obj.Flow = obj.Const.*(obj.Prev.Balance - obj.Next.Balance);
        end
    end % of methods 
end

We also inherit this class from the handle class, since it is not desirable 
to have different copies of the same Pin object.

It is recommendable to test the developed class, in order to find and 
correct any bugs in the code. To do so, create two boxes and connect 
them. After that, test if the equation is calculating the correct flux. In the 
following example, it is implemented two boxes, B01 and B02, with an 
initial balance of 100 and 50, respectively. The boxes are connected with 
a Pin P01, with constant of value 0.1. The initial flux should be:

( )0.1* 100 50 0.1*50 5= − = =Flux

>> B01 = StorageBox(‘B01’,100)
B01 = 
  StorageBox with properties:
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    IdentificationNumber: ‘B01’
                 Balance: 100
             BoxListener: [1x1 event.listener]
>> B02 = StorageBox(‘B02’,50)
B02 = 
  StorageBox with properties:

    IdentificationNumber: ‘B02’
                 Balance: 50
             BoxListener: [1x1 event.listener]
>> P01 = Pin(B01,B02,0.1)
P01 = 
  Pin with properties:
     Prev: [1x1 StorageBox]
     Next: [1x1 StorageBox]
    Const: 0.1000
     Flow: 5

Before implementing the simulation itself, it is necessary to be able 
to record the data generated during the simulation. To do so in an object-
oriented approach, it is developed a Recorder class, which is responsible 
of, at each step of simulation, to record in a matrix the values of the 
boxes balances, as well as the generated fluxes between them. To know 
which boxes or connector generates data to the recorder, it should have 
properties that enables to store such elements. Also, the recorded data is 
another property of the class. In summary, the properties of the Record 
class are:

• Boxes: it stores the boxes in the system.
• Pins: it stores the connectors in the system.
• States: a matrix to store the recorded balances of each box.
• Flows: a matrix to store the recorded flux of each connector.
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The only important method of the Recorder class, besides the 
constructor itself, is the record function. This method goes through each 
box and connector, collecting the current balance or flow data and storing 
in an appropriate matrix.

The following code shows the Recorder class, which is written in a 
single .m file:
classdef Recorder < handle
    % Pin class used to Record data from simulation
       
    properties (SetAccess = private)
        Boxes % collection of the boxes in the system
        Pins % collection of the connectors in the system
        States % matrix with balances of the boxes at each step
        Flows % matrix with fluxes of the connectors at each step
    end
       
    methods
        function obj = Recorder(Boxes,Pins)
            % Constructor method
            obj.Boxes = Boxes;
            obj.Pins = Pins;
            obj.States = zeros(1,length(Boxes));
            obj.Flows = zeros(1,length(Pins));
        end
        
        function record(obj,count)
            % The “main” method of the recorder, used to save in the matrix
            % the recorded data of box balances and connector fluxes
            for i=1:length(obj.Boxes)
                obj.States(count,i) = obj.Boxes(i).Balance;
            end
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            for i=1:length(obj.Pins)
                obj.Flows(count,i) = obj.Pins(i).Flow;
            end
        end
    end % of methods 
end

It is recommendable to test the Recorder class in order to know if has 
any bug and if all the methods and properties are working as expected. In 
the following code, we use the previously developed boxes B01 and B02, 
with the connector P01 and record the data available in the line 10 of the 
matrices of States and Flows of the Recorder R01 object.
>> R01 = Recorder([B01 B02],[P01]);
>> record(R01,10)
>> R01.States
ans =
     0     0
     0     0
     0     0
     0     0
     0     0
     0     0
     0     0
     0     0
     0     0
   100    50
>> R01.Flows
ans =
     0
     0
     0
     0
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     0
     0
     0
     0
     0
     5

The next step to simulate the network of boxes is to develop the 
Simulator class itself. One again, it is undesirable to have copies of the 
same Simulator in different parts of the program, so this class also should 
inherit from the handle class. The Simulator, for the moment, may have 
only one data, that is the Recorder object. To simulate for a given number 
of steps, a method is used with the Simulator object and the number of 
steps as arguments for the function.

The simulate function uses a for loop to, at each step, simulate the 
system, record the data using the recorder and update the balances of the 
boxes.

The following code shows the implementation of the Simulator class, 
in a single .m file.
classdef Simulator < handle
    % Simulator class inhherits from handle class
    % because it is allowed only one copy of 
    % each simulator.
       
    properties (SetAccess = private)
        Recorder
    end
       
    methods
        function obj = Simulator(Recorder)
            % Simulator constructor method
            obj.Recorder = Recorder;
        end
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        function simulate(obj,numsteps)
            % The “main” function of the Simulator
            % numsteps are the number of steps used to simulate
            for j=1:numsteps
                for i= 1: length(obj.Recorder.Pins)
                    % simulate the system using the connectors equation
                    equation(obj.Recorder.Pins(i));
                end
                % record the data using the Recorder object
                record(obj.Recorder,j);
                for i= 1: length(obj.Recorder.Pins)
                    % update the balance of the boxes by adding / removing
                    % the flows
                    remove(obj.Recorder.Pins(i).Prev,obj.Recorder.Pins(i).Flow)
                    insert(obj.Recorder.Pins(i).Next,obj.Recorder.Pins(i).Flow)
                end
            end
        end
    end % of methods 
end

To test the Simulator class, it may be directly implemented the 
example mentioned at the beginning of this subsection. In resume, three 
StorageBox objects are implemented, B01, B02 and B03 and two Pin 
objects, P01 and P02 with 0.1 and 0.2 as the flux constant respectively. 
A recorder R01 is used to record the data of the simulation. A simulator 
S01 is used to simulate the system. In order to approach the time that all 
the balances are equal, the simulator uses 100 steps.

This simulation is named test1.m
B01 = StorageBox(‚B01‘,100);
B02 = StorageBox(‚B02‘,50);
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B03 = StorageBox(‘B03’,50);
P01 = Pin(B01,B02,0.1);
P02 = Pin(B01,B03,0.2);
R01 = Recorder([B01 B02 B03],[P01 P02]);
S01 = Simulator(R01);
simulate(S01,100);
States = S01.Recorder.States;
Flows = S01.Recorder.Flows;
figure
plot(States,’-+’)
ylabel(‘Balances’)
 
figure
plot(Flows,’-o’)
hold on
ylabel(‘States’)

The generated results for the balances of the boxes is shown in the 
figure below, followed by the calculated fluxes between the boxes.

Figure 30: Balances of the three boxes network example – Object-Oriented 
implementation.
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Figure 31: Fluxes between the three boxes – Object-Oriented implementation.

For this case, it can be seen that approximately in the step 40 (forty), 
the fluxes are already almost zero (less than 0.01) and the balances of the 
boxes converges to a similar value (in this case, approximately 66.6667).

JAVA
While not by nature a scientific computing language, Java has grown in 
use since it is naturally object-oriented. According Boisvert (2001), Java 
is portable at both the source and object format levels. Both the source 
format for Java (a .java file) and the object format (the bytecode in a 
.class file) are expected to behave the same on any computer with the 
appropriate Java compiler and Java virtual machine. Second, Java code is 
safe to the host computer. Java implements a simple object-oriented model 
with important features (e.g., single inheritance, garbage collection) that 
facilitate the learning curve for newcomers. But the most important thing 
Java has to offer is its pervasiveness, in all aspects. Java runs on virtually 
every platform Universities all over the world are teaching Java to 
their students. Many specialized class libraries, from three-dimensional 
graphics to online transaction processing, are available in Java.

However, according to the same author there are still some issues to 
be addressed. It fails to provide some of high-level numerical features, 
such as complex numbers and true multidimensional arrays. 
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Basic Java language characteristics
The first main characteristic of Java language is that it is a compiled 
language. This is an important feature when compared with some other 
languages used for scientific computing such as MATLAB, which is an 
interpreted language. The fact that Java is compiled means that the code 
is converted into bytecodes, which makes it very fast.

The syntax in Java is free formatted. This means that the use of 
indentation in the code and blank lines are free and does not change 
the significance in the code. The coding blocks are formed using clear 
delimiters, such as “;” and “{}”.

Variables in Java must be declared before use, and any error in the 
program can be identified during compilation rather than during the 
program run. These features make Java a self-documenting language, 
and highly suitable for large-scale software systems.

The fact already mentioned that Java is naturally object-oriented 
facilitate the programming procedure and organization of the software, 
as the program parts are separated in modules called classes, and objects 
are created in runtime, to define a specific problem domain.

Java primer
To start developing java programs in our machine, it is necessary to 
have a compiler so the text code can be translated and run. For simple 
programs, contained in a single file, an available option it to use online 
compilers. Such compilers are web pages where the user provides the 
code, the web site has a compiler embedded with translates the .java file 
to the .class and .jar file. One example of a free online compiler is https://
www.compilejava.net/.

A second option, which is better specially for more complex programs 
is to obtain and install a compiler in the computer. The following are the 
major Java compilers:

• The Java Programming Language Compiler (javac), included 
in the Java Development Kit from Oracle Corporation, open-
sourced since 13 November 2006.

• GNU Compiler for Java (GCJ), a part of the GNU Compiler 
Collection, which compiles C, C++, Fortran, Pascal and other 
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programming languages besides Java. It can also generate 
native code using the back-end of GCC.

• Eclipse Compiler for Java (ECJ), an open source incremental 
compiler used by the Eclipse project.

A third option is, instead of obtaining only the compiler, to obtain 
an Interactive Development Environment (IDE), where the developer is 
able to write, compile and run the code in a single piece of software, 
making the development much faster. Again, there are a series of options 
available:

• NetBeans: open source solution for coding Java. It supports 
development of all Java application types (Java SE, JavaFX, 
Java ME, web, EJB and mobile applications). It has an 
advantage of being modular by design, so it can be extended 
through plugins to enhance functionality. Besides that, it 
also supports other languages (PHP, C/C++ and HTML5). It 
is multi-platform (Microsoft Windows, Mac OS X, Linux, 
Solaris and other platforms supporting a compatible JVM) and 
can be used for work in Cloud applications, integrated with the 
Google App Engine.

Figure 32: NetBeans screenshot. Source: http://wiki.netbeans.org/Net-
beansUML
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Eclipse: Besides providing the separate compiler, Eclipse is a cross-
platform IDE which allows software development either for mobile, 
desktop, web or enterprise domains. The software contains a base 
workspace with an extensible plug-in system to customize the IDE. The 
plugins also enable the development of softwares in a series of other 
programming languages (C, C++, JavaScript,, Perl, PHP, Prolog, Python, 
R, Ruby).

Figure 33: Eclipse screenshor. Source: http://www.eclipse.org/screenshots/#.

IntelliJ IDEA Community Edition: A free Java IDE mainly used 
for Android App development, Scala, Groovy, Java SE and Java 
programming. It has special features such as a visual GUI builder, code 
completion, code inspection among others. There is a commercial edition 
with additional features and it can be purchased if the developer requires 
such resources.
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Figure 34: IntelliJ IDEA Community Edition screenshot. Source: https://mhre-
views.files.wordpress.com.

AndroidStudio: This Java IDE from Google is specifically designed 
for development of Android apps. Nevertheless, it is capable of running 
and editing some Java code.

Figure 35: Android Studio screenshot. Source: https://img.utdstc.com.
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BlueJ: A software directed for education purposes. Nonetheless, it is 
also appropriate for small scale software development. It uses JDK (Java 
Development Kit) as a support tool to run. The main screen graphically 
shows the class structure of an application under development and objects 
can be interactively created and tested. This interaction facility, combined 
with a clean, simple user interface, allows easy experimentation with 
objects under development and this allows beginners to get started more 
quickly, and without being overwhelmed (IDR Solutions, __).

Figure 36: BlueJ screenshot. Source: https://bluej.soft32.com/
DrJava: A free Java Ide designed mainly for educational purposes. 

It is extremely lightweight and it provided an intuitive interface and the 
possibility to interactively evaluate the code. Its main feature is for it to 
be used as a unit testing tool, a source level debugger, an interactive pane 
for evaluating text of the program, intelligent program editor and can be 
used for more depending on your requirements (IDR Solutions, ___).
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Figure 37: DrJava screenshot. Source: http://www.drjava.org.

To develop the code shown in the following sections, the book authors 
chose to make use of DrJava IDE. The reasons are its intuitive and easy 
use, as well as it lightweight, which makes it possible to use even from 
a USB stick, without any installation. The software can be downloaded 
directly from the website http://www.drjava.org.

Developing the first program in Java
This sections introduces Java programming by showing a simple and 
classic example, the Hello World program. The main task of the program 
is to print a message in the screen (Hello World! Or any other message that 
the developer desires) and exit the program. Although without being of 
any practical use, this program helps the reader to grasp some principles 
in Java programming. The authors used Windows platform and DrJava 
IDE to develop the code.

To start an empty folder is created, in any place that the reader desires 
(e.g C:\Java). We create an empty text file inside this folder by navigating 
to it, right clicking anywhere and choosing the options to create a text 
file. Initially Windows gives a default name “New Text Document.txt”. It 
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is necessary to change not only the name of the file but also the extension. 
Because it is being developed a java program, the extension must be 
.java. So, the file is renamed to “HelloWorld.java”. After that, open the 
file and type the following code:
 public class HelloWorld {
   public static void main(String[] args) {
      // Prints “Hello, World” in the terminal window.
      System.out.println(“Hello, World”);
   }
}

Save the file and close it. The program Hello World was just written, 
but in order to run, it is necessary to compile the code- The compilation 
can be done using the DrJava. First start the IDE by clicking on it wherever 
it was downloaded. Once the program starts the following window is 
shown (Windows platform).

Figure 38: Initial window of DrJava (Windows platform).
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To open the HelloWorld.java file in the IDE, use the Open button on 
the toolbar and search the file, or simply drag and drop it from the folder 
to the IDE. Once the field is imported, the text code is shown in the main 
window of DrJava. To compile the code, go to Tools > Compile Current 
Document. If this is no error, a message appears on the bottom window 
of the program with the message “Compilation Completed”. With this, 
a new file is created at the same directory of the .java file, with the same 
name but the .class extension.

To see if the program runs, go to Tools > Run Document. With this, 
the bottom window shows some messages and the result of the program 
after the line “> run HelloWorld”. It printed the message and exited, as 
it was expected. 

Alternatively, after compiling the .class program can be run in a 
command prompt, by issuing the command “java HelloWorld” and see 
the output on the screen.

Java basic language elements (Data types)
A native language element or a data type is a set of values, with determined 
operations performed on them. In Java, there are primitive types and 
reference types. The primitive types are summarized in the following 
table

Type Set of values Sample values

int Integer 1   20     98754

double Floating-point num-
bers

    2.9191        2.02e45

boolean Boolean values true         false

char Characters ‘A’       ‘1’        ‘\n’

String Sequence of charac-
ters

“AB”      “Hello”     
“2.98”

And the reference types are:
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• Reference to objects;
• Type name is the same as class name;
• Variables hold references to dynamically allocated memory 

space.

Integer
An integer is any whole number between -231 and 231 – 1  (−2,147,483,648 
to 2,147,483,647). 

Floating-point number
The double data type represents floating-point numbers which can be 
used in scientific applications. This type of data can be represented using 
a point as decimal separator (i.e 1.22) and  accepts scientific notation (i.e 
1.2e3 for 1.2*103).  A series of different operations with this type of data 
is native in Java, as illustrated in the following table:

Expression value

1.27 + 2.1 2.37

1.27 – 2.1 -0.83

1.27 / 2.1 0.60476…

2.1 % 1.27 0.83

1.0 / 0.0 NaN

Math.sqrt(3.0) 1.732….

Math.sqrt (-3.0) NaN

Boolean values
This data type can assume only two values: true or false. The basic 
operations with Booleans are shown in the table below.

Operator Name Operator symbol Definition
And && a && b is true if both a and b 

are true.
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Or || a || b is true if either a or b is true.
Not ! !a is true if a is false, otherwise 

is true

Comparison operators are a special type of operators that generates 
Boolean results by comparing int or double data types. The following 
table shows some examples of these operators.

Operator Operator symbol True False

Equal == 2 == 2 2 == 2.1

Not equal != 2 != 3 2 != 2

Less than < 2 < 3 2.1 < 2

Less than or equal <= 2 <= 2 2 <= 1

Greater than > 3 > 2 2 > 3

Greater than or equal >= 3 >= 3 2 >= 3

Strings
A string is a sequence of characters. They may be concatenated using “+” 
operator.
String str1 = “anystring”;
String str2 = “12”;
String str3 = str1 + str2;

In a Java program, the basic data types are used to construct objects 
that can communicate with each other via their methods. There are four 
main concepts in the object-oriented programming in Java:

• Object: Structures with state(s) (variable or not during the 
program lifetime) and behaviors. For instance, a specific 
car has a color, number of wheels, power and speed. It has 
behaviors such as change gear, accelerate/ brake, reserve, stop, 
turn on or off.

• Class: A template to generate objects. The car example 
mentioned above, as a template for specific car objects, is a 
class.

• Methods: The methods of a class define its behavior. A class 
may contain a single method or different methods. Every data 
manipulation, executed action and state change is done through 
the methods of the object / class.
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• Instance variables: Objects defined using the classes have a 
specific set of instance variables.

 Java basic methods
A statement is declared using the following rule
<type> identifier;
<type> identifier = <initial value(s)>;

Java is case sensitive. This means that the identifiers x and X have 
different meaning. The following are some examples of statements:
int x = 24;
int y,z = x, 25;
double[] exarray = {1.1, 2.4, 9};
Point2D p1 = newPoint2D(1.2,5.6);

A class is identified using the keyword class and a name of the class 
starting with upper case. Conventionally, each first letter of the words 
inside the class name should also be in upper case.
class MyClassTemplate

The methods defined inside the class start with a lower case and 
conventionally each first letter of the words inside the methods name is 
in upper case.
public void myJavaMethod

The name of the program file is exactly the same as the name of the 
class defined inside it, using the same upper and lower cases as the class 
name, with the extension .java at the end of the name. For instance, if 
there is a class called SportCar, then the name of the file containing this 
class should also be SportCar.java.

Java program processing always starts from the following method:
public static void main(String args[])

The following table gives a list of reserved words in Java syntax. 
These keywords can not be used to generate variables, constants or any 
other identifier names.
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abstract assert boolean break

byte case catch char

class const continue default

do double else enum

extends final finally float

for goto if implements

import instanceof int interface

long native new package

private protected public return

short static strictfp super

switch synchronized this throw

throws transient try void

volatile while

Comments can be used throughout a program to give information 
regarding the code. The comments are ignored by the compiler, so they 
are used only for informative purposes. In Java, comments in a single 
line starts with a “//”. In the case that it is necessary to do a multi-line 
comment, the first line starts with the “/*”, and every following line 
starts with the “*”. The last line of the comment ends with the “*/”. The 
following gives example of commenting in Java.
// this is a single line comment.
int x = 24;
/* this is second way of writing a single line comment. */
int y = x;
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/* this is
* a comment that
* spans three lines. */

Conditional statements and loops
Conditional statements define block of codes that only runs with a certain 
condition or set of conditions are met.

Loops are special language structures in programming used to 
repeat a block of code for a certain amount of times, according defined 
condition(s).

An if statement is used to run a block of code, as long as condition(s) 
is (are) met. The Java syntax for this type of conditional statement is 
exemplified below:
if ( a > b )
{
 String mystring = “abcd”;
 b = a + 1;
}

A while block is used to repeat a block of code, while a specified 
condition is met. The use of this syntax allows the developer to execute 
a grouped statement as many times as necessary, without rewriting the 
same code over and over again.
int a, b = 10, 1; // initialize the necessary variables
while ( a > b ) 
/* the loop only starts and repeats as long as
* the conditions are met. */
{
 String mystring = “abcd”;
 b = a + 1;
}

An important thing to keep in mind is that infinite loops should be 
avoided. Infinite loops happen when the program enters in the loop block 
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and the program never reaches the condition necessary for it to exit. 
The for loop is used to run a specified block of code in a determined 

amount of times. A variable is used to start the loop, and a loop continuation 
condition is defined, as well as the rule of incrementing/ decrementing 
the variable. 
int n = 10; // initialize necessary variable
int inc = 2;
for (int i = 0; i <= n; i++ ) 
{
 inc = inc * i;
}

Additional constructs and statements can be used in order to elaborate 
more on the conditional blocks. If it is necessary to exit a loop statement 
without necessarily reaching its end condition, a break statement can be 
used. 

There are also situations when it may be necessary to jump to the 
next iterations of the loop. In this case, a continue statement can be used 
inside a loop, transferring the flow of control directly to the increment 
statement of the next iteration loop.

In the case that, instead of only one or two conditions are to be 
considered, there a list of options may be necessary, the switch statement 
can be used.

The analysis if a condition is met can be calculated before the loop or 
the conditional statement, using Boolean values. The conditional operator 
“?”: is a ternary operator (three operands) that enables you to embed a 
conditional within an expression. The three operands are separated by the 
“?” and “:” symbols. If the first operand (a boolean expression) is true, 
the result has the value of the second expression; otherwise it has the 
value of the third expression (Sedgewick & Wayne, 2007).

Object-Oriented characteristics of Java

Inheritance
Inheritance is the way that a class acquires properties and methods from 
another. It enables the development of programs in a hierarchical order. 
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The class above, possessing definitions of the inherited properties and 
methods is called superclass, parent class or base class while the class that 
acquires such properties and methods is referred to as subclass, derived 
class or child class. This type of relationship is called is a relation. For 
example, a Sport Car is a (specialized type of) Vehicle. So, Vehicle would 
be a superclass defining general methods and properties, while the Sport 
Car inherits all these properties and may have some specific ones, which 
does not interfere with the Vehicle class.

In Java, a subclass is defined by using the keyword extends followed 
by the name of the superclass. Example:

Class MySuperClass {

}
Class MySubClass extends MySuperClass {

}

To clarify, in the following example it is written two types of data, a 
generic Data and a specialized version of Data, Vectorial Data. The only 
method that it has is to print the data. The Vectorial Data runs the same 
method as the superclass, and additional code is added to its method. The 
superclass Data is defined as:
class Data {
   int datetime;
   double value;
 
   void showdata() {
      System.out.println(“Date Time:”+datetime);
      System.out.println(“Value:”+value);
   }
}

There are two attributes of this class, datetime and value. These 
attributes are also inherited to the following child class, which overrides 
the method showdata by adding more code. The overriding characteristics 



Object-Oriented Development and Programming 139

of Java will be described in the next subsection.
class VectorialData extends Data {
  String direction;
    
   void showdata(){
      super.showdata();
      System.out.println(“Direction:”+direction);
   }
}

In the same file, a class named DataInheritance runs the main 
program. It generates one instance of the generic data and prints, and 
another instance of the specialized vectorial data, and prints. The file 
must be saved with the same name as this main class (DataInheritance).
class DataInheritance
{
  public static void main(String[] args) { 
    Data data1 = new Data();
    data1.datetime = 20170101;
    data1.value = 1;
    data1.showdata();
    
    VectorialData vecdata1 = new VectorialData();
    vecdata1.datetime = 20170102;
    vecdata1.value = 1.5;
    vecdata1.direction = “south”;
    vecdata1.showdata();
}
}

Once the code is compiled and run, the following output is obtained.
> run DataInheritance
Date Time:20170101
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Value:1.0
Date Time:20170102
Value:1.5
Direction:south

So, the Vectorial Data class inherited from the superclass its attributes, 
and extends it to have additional attributes and possibly methods. Other 
classes could also be inherited from the same superclass, without 
affecting the Vectorial Data subclass. Additionally, subclasses may also 
be derived from the subclass Vectorial Data, producing even more and 
more specialized classes, as the following example:

Figure 39: Example of inheritance of classes.

Overriding
Overriding consists on the ability writing over a previously defined 
method, redefining or extending it. 

There are some advantages on overriding, such as to define a behavior 
according specific characteristic of the subclass, which means that a 
subclass implements a superclass method according its requirement.

Rules are well established for methods overriding:
• The argument list should be the same as that of the overridden 

method. Ex: the method run (double km, double velocity) 
should be overridden with a function that also admits two 
arguments.

• The type which is returned should be the same or a subtype of 
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the return type declared in the superclass method.
• Access level can be extended, but not restricted. This means that 

a superclass method declared as public cannot be overriding 
by a private or protected method.

• Only inherited methods can be overridden.
• The keyword final avoids a method to be overridden.
• A static method may not be overridden, but can be re-declared.
• Constructors can not be overridden.

Polymorphism
Polymorphism is defined as the capability of an object to assume different 
forms. A common case of polymorphism in OOP is when a superclass 
reference is used in order to refer to a subclass object.

Polymorphism is tested by applying more than one IS-A test. If the 
object can pass this test, then it is said to be polymorphic. All objects 
in Java are polymorphic since any object will pass the IS-A test. The 
following is an example of such case:
public interface Carnivorous{}
public class Animal{}
public class Lion extends Animal implements Carnivorous{}

Lion is considered to be polymorphic, since it has multiple inheritance. 
The following IS-A tests can be successfully applied to the Lion class:

• Lion IS – A Carnivorous
• Lion IS . A Animal
• Lion IS – A Lion
• Lion IS – A Object
Having passed on these tests, the following statements can be applied 

to the Lion object reference without errors:
Lion l = New Lion();
Animal a = l;
Carnivorous c = l;
Object o = l;
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The reference variables a, c and o refer to the same Lion l object.

Abstraction
In Object-Oriented programming, abstraction is the capability of 
hidden from the user the process of implementation, providing only the 
functionality necessary. In summary, the user has the information on 
what the object does instead of how it does it. This process is achieved in 
Java using Abstract classes and interfaces.

Abstract classes can contain abstract methods, but not necessarily. 
An abstract method is a method without body. Nonetheless, if the class 
contains at least one abstract method, then it must be declared as an 
abstract class. Abstract classes can not be instantiated. Once a subclass 
is developed from an abstract class, it must provide implementation to 
all the present abstract methods in the superclass. The following is an 
example of an abstract class.
/* File name : Shape.java */
public abstract class Shape {
   private String name;
   int pointx;
   int pointy;

   public Shape(String name, int pointx, int pointy) {
      System.out.println(“Constructing a Shape”);
      this.name = name;
      this.pointx = pointx;
      this.pointy = pointy;
   }
   
   public double computeArea();
   
   public void computePerimeter();

   public String getName() {
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      return name;
   }
}

Encapsulation
Encapsulation is the ability of packing data (variables) and methods 
(function) into a single unit. When encapsulated, data from one class is 
hidden from other classes, and can only be accessed though the methods 
of their current class. Because of that, encapsulation is also referred to as 
data hiding.

Encapsulation can be done in Java by declaring variables of a class 
as private, and providing public setter and getter methods to modify and 
view the variables values.

Advantages of encapsulation are, among many, the ability of making 
some specific attributes read-only or write-only and the class can be over 
total control of what is stored in its fields.

Interfaces
An interface is a similar data type to classes, in the sense that it is a 
collection of abstract methods. A class implements an interface, 
inheriting the abstract methods of the interface. An interface may also 
have constants, default methods, static methods and nested types. Only 
default and static methods may have bodies. All the others are declared 
only.

An interface defines the functions or behaviors that a class implements. 
Nonetheless, writing an interface is analogous to writing classes. Once a 
class implements an interface, it must also define all its abstract methods, 
or be also defined as abstract.

The definition of an interface is done inside a .java file, with the name 
of the file equal to the name of the interface. The compiled code of the 
interface is generated in .class file. Like classes, interfaces may appear in 
packages, and their bytecode file must be in a directory structure that has 
the same name as the package name. Like abstract classes, an interface 
can not be directly instantiated.

To declare an interface, use the keyword interface, as in the following 
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example:
/* File name : myInterface.java */
import java.lang.*;
// Any number of import statements
public interface myInterface {
   // Any number of final, static fields
   // Any number of abstract method declarations\
}

Packages
Packages are groups of related types (classes, interfaces, enumerations 
and annotations) which can provide access protection and namespace 
management. They are especially useful to prevent naming conflicts, to 
make searching/locating and to define the use of classes, interfaces, etc 
simpler.

Examples of existing packages in java that may be mentioned are:
• java.lang − bundles the fundamental classes
• java.io − classes for input, output functions are bundled in this 

package
When creating a package, the developer must follow some guidelines. 

At the top of every source file, a package statement must be clearly stated 
in the first line of the source file, and each source file can contain only 
one package statement with the classes, interfaces, enumerations, and 
annotations that are included in the specific package.

To use packages in the program, the file has to be compiled with 
a directive specifying the package that has to be included. With this, a 
folder with the given package name is created in the specified destination, 
and the compiled class files will be placed in that folder.

To use classes in defined in different files but still in the same package, 
the package name must be used in the top of the file. In case one class 
need to refer to another class in a different package, there are three ways 
of accomplishing this:

The package keyword followed by a dot and the full name of the 
class can be used as in:
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package.myClassName
Another option is to directly import the class using the keyword 

import and the wild card (*). 
import package.*

A third way is to use the keyword import and the name of the class 
itself, with the keyword package and a dot preceding it.
import package.myClassName

Once a class is placed on a package, the name of the package becomes 
part of the name of the class (mypackage.MyClass for example), 

Data structures
Data structures are important Java utilities and can be used to perform a 
variety of operations, especially for scientific computing. Some of them 
which may be mentioned are:

• Enumeration
• Bitset
• Vector
• Dictionary
• Hashtable
• Properties

Enumeration
Enumeration is an interface which allows organize elements in such a 
way that methods can be used to retrieve them as a collection of objects. 
It is a useful type for iterations where it may be necessary to go through 
each element of an array of objects. The enumeration interface defines 
two methods:

• Boolean hasMoreElements () – As the name shows, this 
method is used to check if all elements of the enumeration 
where already extracted(false), or if there are still elements to 
be extracted (true).

• Object NextElement () – This method is used to extract the 
next element in the queue of the enumeration.
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BitSet
This class implements a set of bits or flags that can be treated individually 
(set or deleted). This is particularly useful if the program makes use 
of a large set of Boolean values and they need to be set and cleared as 
appropriate.

There are two ways of generating a BitSet, using one of the two 
constructors mentioned below:
BitSet () – Default BitSize object creation.

BitSize (int size) – An initial size of the object can be defined in the 
constructor, specifying the number of bits that it can hold. The initial 
value of the bits is zero.

Vector
The vector is a flexible class which works in the same ways as an array 
in Java, although it can grow to accommodate more elements. The 
accessibility of elements in a vector is done through indexing. Vectors 
are constructed using one of the following directives:

• Vector () – Default constructor, with an initial size of 10 
elements.

• Vector ( int size ) – Optionally the developer can assign the 
initial size of the vector.

• Vector ( int size, int cr ) – Besides the initial size, the developer 
can specify the increment, which defines the number of 
elements that the vector grows every time it exceeds its 
maximum capacity.

• Vector (collection C) – This constructor creates a vector and 
apply each element in the collection c to a position in the 
Vector instance.

In the following table is listed some of the methods of the vector 
class.

Method Return (void me-
ans no return)

Description

add (int index, object element) void Inserts the element in the position 
specified.
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add (Object element) boolean The element is added to the end 
of the vector.

addAll (Collection C) boolean Inserts all the elements of the 
collection at the end of the vector.

addAll (int index, Collection C) boolean Adds all the elemennts of the col-
lection in the specified position.

capacity () Int Returns the size of the vector.

clear () void All the elements of the vector are 
removed.

Applications in Scientific Computing

Square root Calculator
The following application is a program developed to calculate a 
reasonable approximation of the square root of any positive number 
using object-oriented programming in Java. The algorithm used is the 
Newton-Raphson method for root finding, which reads:
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Where 1+ix  is the approximation of the root of ( )nf x . The function to calculate 
the square root of any number can be expressed as:
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Where S is the number which it is desired to know the root, and x is 
the root itself. Applying this function in the Newton-Raphson algorithm, 
one obtains:
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This iterative algorithm is used to find an approximation of the root 
of any number, as long as it is positive.

The main Java program used to solve this problem is divided into 3 
classes. The first class prints the values of :the current iteration;
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• the current root approximation value;
• the approximation error
The following code illustrates this class, which is here called 

ScreenOutput:
class ScreenOutput {
  
  void updateScreen(int i, double xi, double x0)
  {
    System.out.print(i);
    System.out.print(“   “);
    System.out.printf(“%.3f”,xi);
    System.out.print(“                     “);
    System.out.printf(“%.3e”,Math.abs(xi - x0/xi));
    System.out.println(“ “);
  }
  
  void printHeader()
  {
    System.out.println(“It    x                   Error”);
  }
}

The class has no data, and two methods. The first one (updateScreen) 
is used to print in the screen the value of the variables of interest at each 
iteration step. The second method (printHeader) prints a header which 
should be placed before starting the iterations.

The second class used in the program calculates at each iteration the 
root approximation using the Newton-Raphson algorithm mentioned 
above. The code reads:
class SqrtAlgorithm
{
  double x0;
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  double xi;
  double epsilon;
  
  void updateFcn()
  {
    xi = (x0/xi + xi) / 2.0;
  }
}

The class has three properties, or states, which are used to calculate 
the root approximation at each iteration. The property epsilon is the 
acceptable error of the calculation.

The third class, which forms the core of the program, accepts two 
arguments from the user: the number that the user wants to know the 
root, and the acceptable error. The program than writes a small reader 
to indicate that it has started and creates instances of the two other 
classes. These instances are used to do the calculations and the necessary 
screenoutput. The code of this class reads:
public class Sqrt {
    public static void main(String[] args) { 
        // read in the command-line argument
        double x0 = Double.parseDouble(args[0]);
        double epsilon = Double.parseDouble(args[1]);
        // repeatedly apply Newton update step until desired precision is 
achieved
        System.out.println(“==================”);
        System.out.println(“SQUARE ROOT CALCULATOR”);
        System.out.println(“==================”);
        ScreenOutput scrout1 = new ScreenOutput();
        SqrtAlgorithm algo = new SqrtAlgorithm();
        algo.xi = x0/2;              // estimate of the square root of c
        algo.epsilon = epsilon;        // maximum error
        algo.x0 = x0;
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        scrout1.printHeader();
        if ( algo.x0 >= 0 )
        {
          int i = 0;
          scrout1.updateScreen(i, algo.xi, algo.x0);
          while (Math.abs(algo.xi - algo.x0/algo.xi) > algo.epsilon*algo.xi) {
            i++;
            algo.updateFcn();
            scrout1.updateScreen(i, algo.xi, algo.x0);
          }
          // print out the estimate of the square root of c
          System.out.println(algo.xi);
        }
        else
        {
          // print out an error message
          System.out.println(„Error. No root of negative value!“);
        }
        

        
    }

}
The next step is to test the developed algorithm. A good methodology 

to start doing is to use values which the analytical square root is already 
know. In this way, we can measure the analytical error and if the program 
has any bugs.

We may start by using the program to calculate the square root of the 
number 9. It is already knowing that:

9 3=
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It is expected that the program may not fall exactly in the analytical 
square root of the number, as numerical approximation is used, which 
admits some error. So, we may start admitting a relatively large error of 
0.1. This means that the calculated square root should fall somewhere 
inside the interval [2.95,3.05]. One the program runs, it generates the 
following output:
> run Sqrt 9 0.1
==================
SQUARE ROOT CALCULATOR
==================
It    x                   Error
0   4.500                     2.500e+00 
1   3.250                     4.808e-01 
2   3.010                     1.920e-02 
3.0096153846153846In the program, we fixed the initial guess to be 
always half of the value inputted by the user, which may be good in some 
cases, but not so much for others. The program takes 2 iterations to arrive 
in the value 3.0096, with an error less than 2E-2, or 0.02.

Next, we test the algorithm to find a much better solution using a 
smaller acceptable error, 1E-15 (the number 1 with 15 zeros to the left 
side). The output of the program is the following:

> run Sqrt 9 1e-15
==================
SQUARE ROOT CALCULATOR
==================
It    x                   Error
0   4.500                     2.500e+00 
1   3.250                     4.808e-01 
2   3.010                     1.920e-02 
3   3.000                     3.072e-05 
4   3.000                     7.864e-11 
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5   3.000                     0.000e+00 
3.0This time, as expected, it took some more iterations of the program 

to arrive in a value inside the admissible interval of error. The program 
ran through five iteration, until it reaches a value so next to three that the 
error is almost zero.

We may also test the program with a trickier case. Specially we can 
try to calculate the root of the number 1 (one), which is equal 1. Using 
the same small admissible error as the case above (1e-15), the program 
output is:
> run Sqrt 1 1e-15
==================
SQUARE ROOT CALCULATOR
==================
It    x                   Error
0   0.500                     1.500e+00 
1   1.250                     4.500e-01 
2   1.025                     4.939e-02 
3   1.000                     6.097e-04 
4   1.000                     9.292e-08 
5   1.000                     2.220e-15 
6   1.000                     0.000e+00 

1.0In this case, the program starts using 0.5 as the initial guess for 
the square root of 1. It takes 6 iterations to achieve a value inside the 
admissible interval. It can be seen that this admissible error is very strict 
and in more flexible situations the program could even stop in the 3rd or 
4th iteration, where it has already been reached a value very near to the 
real analytical root of the desired number.

Extending the Square root Calculator: Generic Root Finder
In this section, the Square root calculator developed above is extended, 
so it may find the root of any function. In this first version, two classes 
must be defined by the user, which are the function which he wants to 
find the root(s) and the analytical derivate of the function. As arguments 
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to the program, the user provides the initial guess of the root and the 
admissible error.

The class function has no properties and a single method, which is 
used to calculate the function at the desired point. To test the developed 
code, we use the function to calculate the square root of 9, which we can 
analytically obtain (3). The code of this class reads:
class Function {
  
  double calculate(double x)
  {
    return x*x-9;
  }
}

The class dfunction calculates the analytical derivative of the 
function at the desired point. Again, the class has a single method and 
no properties. The method calculate is used to find the derivate of the 
function defined in the class mentioned above. It is important in this case 
that this derivative is the correct expression according to the function 
defined above. Otherwise it will not work properly. We use the appropriate 
derivative expression of the function defined above.
class DFunction {
  
  double calculate(double x)
  {
    return 2*x;
  }
}

The class used to generate output to the screen (ScreenOutput) is 
changed to show the error as the difference between the previous value 
of the root approximation in the iteration with the current value of it. The 
code for this class now reads:
class ScreenOutput {
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  void updateScreen(int i, double xiold, double xinew)
  {
    System.out.print(i);
    System.out.print(“   “);
    System.out.printf(“%.3f”,xinew);
    System.out.print(“                     “);
    System.out.printf(“%.3e”,Math.abs(xiold - xinew));
    System.out.println(“ “);
  }
  
  void printHeader()
  {
    System.out.println(“It    x                   Error”);
  }
}

A class called NewtonRaphson is used to calculate the root 
approximation at each iteration step. This class receives as properties the 
initial guess of the root, the function to be evaluated and the derivative of 
the function. These last two properties are previously defined instances 
of the classes Function and DFunction mentioned above. The only 
method of this class is to calculate the newton Raphson algorithm at each 
iteration step. The code of it reads:
class NewtonRaphson
{
  double xi;
  Function function;
  DFunction dfunction;
  
  void updateFcn()
  {
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    double f_x = function.calculate(xi);
    double df_x = dfunction.calculate(xi);
    xi = xi - f_x / df_x;
  }
  
}

The main class is rename to RootFinderv1 (it is the version 1), and 
the code inside was modified so as to accommodate the changes made in 
the structure of the program. The code of this part is written below:
public class RootFinderv1 {
    public static void main(String[] args) { 

        // read in the command-line argument
        double x0 = Double.parseDouble(args[0]);
        double epsilon = Double.parseDouble(args[1]);

        // repeatedly apply Newton update step until desired precision is 
achieved
        System.out.println(“==================”);
        System.out.println(“ROOT FINDER CALCULATOR”);
        System.out.println(“==================”);
        ScreenOutput scrout1 = new ScreenOutput();
        Function f1 = new Function();
        DFunction df1 = new DFunction();
        NewtonRaphson algo = new NewtonRaphson();
        algo.xi = x0;              // estimate of the square root of c
        algo.function = f1;
        algo.dfunction = df1;
        scrout1.printHeader();
        int i = 0;
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        double xi = x0*1000;
        scrout1.updateScreen(i, xi, algo.xi);
        while (Math.abs(xi - algo.xi) > epsilon) {
          xi = algo.xi;
          i++;
          algo.updateFcn();
          scrout1.updateScreen(i, xi, algo.xi);
        }
        // print out the estimate of the square root of c
        System.out.println(algo.xi);
    }

}
The next step, as it was done in the previous example, is to test the 

developed code. One point to be mentioned first is to respect with the 
different roots that a function may have. Suppose a linear function y = 
2x+1.The root of this function can be easily checked by rearranging the 
equation as follows.

 1   
2
−

=
y

x

To obtain the root of such function, it is only necessary to replace y 
= 0, in which case we obtain x = -1/2. A plot of this function is shown 
below, where it can be seen the point that y=0 (in this point x is the root 
of the equation).
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Figure 40: Graph of the function y = 2*x + 1.

From the plot above, it can also be clearly seen that, as the function 
infinitely increases to the right-hand side or infinitely decreases to the 
left-hand side, this function has a single root. However, consider now the 
function used to calculate the square root of number 9. The function is 
stated below.

2 9= −y x

Again, it is possible to find the root by directly manipulation of the 
above equation, isolating the x on one side of the equation, as it follows:

9= +x y

By assuming y = 0, one can see that two values can be obtained for 
x, -3 (3 negative) and +3 (3 positive). A plot in this region of the function 
is shown below.
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Figure 41: Plot of the function y = x2-9

In the present section, it is applied a numerical procedure to calculate 
the root(s) of the provided function. The numerical method being 
used here is Newton-Raphson. This method is very well known for its 
efficiency and for its fast convergence. However, the method can only 
find one root at a time. The root that will be found depends mainly on the 
initial guess used, which will give the direction of the gradient.

Now we test the RootFinderv1 program to find the root(s) of the 
equation used to calculate the square root of 9, mentioned before. The 
following results are obtained if an initial condition of 4.5 is used and an 
admissible error of 1e-8.
> run RootFinderv1 4.5 1e-8
==================
ROOT FINDER CALCULATOR
==================
It    x                   Error
0   4.500                     4.496e+03 
1   3.250                     1.250e+00 
2   3.010                     2.404e-01 
3   3.000                     9.600e-03 
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4   3.000                     1.536e-05 
5   3.000                     3.932e-11 
3.0

The program took 5 iterations to find the root of the desired function 
within the admissible interval. The root that was found was the positive 
one (+3), although we know that there is also another root in (-3). To 
check that, run the code again using as initial guess (-4.5) and the same 
error.
> run RootFinderv1 -4.5 1e-8
==================
ROOT FINDER CALCULATOR
==================
It    x                   Error
0   -4.500                     4.496e+03 
1   -3.250                     1.250e+00 
2   -3.010                     2.404e-01 
3   -3.000                     9.600e-03 
4   -3.000                     1.536e-05 
5   -3.000                     3.932e-11 
-3.0

As expected, the program converged to -3, which is another root of 
the function. The algorithm may be used for a function with different 
roots, but the root found will depend on how the initial guess directs 
the gradient during the iteration process. As a last test, we modify the 
equation to a third order polynomial of the form:

3 24 12 24 32= + − −y x x x

From the function above we can obtain the analytical derivative as 
follows:

212 24 24= +′ −y x x

The plot below shows the 3 roots of the function:
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Figure 42: Plot of the function 3 24 12 24 32= + − −y x x x .

Replacing the function and the analytical derivative in the respective 
classes of the program, and using as initial guess -5 with admissible error 
of 1e-8, the program produces the following output:
> run RootFinderv1 -5 1e-8
==================
ROOT FINDER CALCULATOR
==================
It    x                   Error
0   -5.000                     4.995e+03 
1   -4.282                     7.179e-01 
2   -4.033                     2.494e-01 
3   -4.001                     3.211e-02 
4   -4.000                     5.191e-04 
5   -4.000                     1.348e-07 
6   -4.000                     9.770e-15 
-4.0

The program arrives the extreme left root of the equation (-4). This 
value can be checked by replacing the value in the function, which should 
produce the value 0 (zero). As a second tentative, use as initial guess the 
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value -2.7 and the same error.
> run RootFinderv1 -2.7 1e-8
==================
ROOT FINDER CALCULATOR
==================
It    x                   Error
0   -2.700                     2.697e+03 
1   28.776                     3.148e+01 
2   18.918                     9.858e+00 
3   12.380                     6.538e+00 
4   8.072                     4.308e+00 
5   5.277                     2.795e+00 
6   3.529                     1.747e+00 
7   2.537                     9.926e-01 
8   2.102                     4.350e-01 
9   2.005                     9.695e-02 
10   2.000                     4.786e-03 
11   2.000                     1.146e-05 
12   2.000                     6.570e-11 
2.0

An interesting situation happens in this case. Because the derivative 
in this point is very low, the algorithm jumps on the 1st iteration from -2.7 
and 28.7, and then it starts to converge to the extreme right root of the 
equation, jumping the root which is in the middle of these two roots. We 
test the program one last time, by using as initial guess -2 and the same 
error.
> run RootFinderv1 -2 1e-8
==================
ROOT FINDER CALCULATOR
==================
It    x                   Error
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0   -2.000                     1.998e+03 
1   -0.667                     1.333e+00 
2   -1.009                     3.419e-01 
3   -1.000                     8.547e-03 
4   -1.000                     1.388e-07 
5   -1.000                     0.000e+00 
-1.0

As expected, the algorithm converged relatively fast to the root in the 
middle, taking only 5 iterations to arrive inside the admissible interval.

Extending the Generic Root Finder with Numerical Derivative
In many common applications in scientific computing, one desires to 
calculate the root of a function, but it may be so complicated that it is 
unfeasible to obtain an analytical one. In this case, a numerical derivative 
can simplify the problem, by assuming an approximation as follows:

Which is referred to as Forward Euler approximation. We can 
implement this finite derivate in out Root Finder program, in order 
to extend it to function which an analytical derivative is not directly 
available. First it is necessary to change the DFunction to use the above 
equation instead of the analytical one, as it follows:
class DFunction {
  
  double dx = 0.01;
  Function function;
  
  double calculate(double x)
  {
  return (function.calculate(x+dx)-function.calculate(x))/dx;  
    
  }
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}

In this case, a property to the DFunction was added, dx, which is the 
size of the finite step given to calculate the derivative. Ideally this step 
should be very small, so we fix a value of 0.01. Another added property 
is the function, so at each time that the derivative is called, it calculates 
the finite difference using the function defined in an instance of the class 
Function.

Another minor modification is to add during the program an attribution 
of the generated instance of the function to the property function of the 
DFunction object, according:
df1.function = f1;

Now it is necessary to test this new version, which we call 
RootFinderv2. We test with the same third-order equation defined in the 
previous case, an initial guess of -2.7 and an admissible error of 1e-8. 
The following results are obtained:
> run RootFinderv2 -2.7 1e-8
==================
ROOT FINDER CALCULATOR
==================
It    x                   Error
0   -2.700                     2.697e+03 
1   24.570                     2.727e+01 
2   16.128                     8.441e+00 
3   10.540                     5.588e+00 
4   6.874                     3.666e+00 
5   4.519                     2.355e+00 
6   3.084                     1.435e+00 
7   2.322                     7.622e-01 
8   2.043                     2.796e-01 
9   2.001                     4.161e-02 
10   2.000                     1.079e-03 
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11   2.000                     5.953e-06 
12   2.000                     2.967e-08 
13   2.000                     1.478e-10 
2.00000000000074

Although this initial guess is not a very good one, for the very small 
derivative generates a big jump in the root approximation, the algorithm 
with finite differences works well, taking 13 iterations to find the root, 
while the one with the analytical derivative took 12, just one less.

PYTHON

Introduction
Python is a high -level, object-oriented programming language with 
simple to use syntax. Python is a multi-purpose language, it may be 
used for Graphical User Interface development, Data Analysis, Web 
development, Scientific Computing, etc.

As an interpreted language, when one runs a python program, an 
interpreter will parse the code line by line. This is a major drawback 
when compared with Java or C++, which are compiled languages. This 
feature makes Python slightly slow.

Python is also an extensible language, and a variety of packages are 
available with many functionalities already implemented, so the new 
developer does not need to start from the scratch when developing a 
software.

Comprehensive online guides on how to get started in Python can be 
found, among other sites, in the following addresses:
https://www.programiz.com/python-programming
https://www.python.org/about/gettingstarted/
https://wiki.python.org/moin/BeginnersGuide
http://thepythonguru.com/getting-started-with-python/

Obtaining Python
Python is a free software, so it can be directly obtained in the internet. The 
official homepage for Python is https://www.python.org/. To a Python 
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distribution, navigate to the 
Downloads in the top toolbar, and choose the platform (Windows, 

Linux, MacOS). A new webpage will be opened and one has only to 
choose one of the links according the desired release.

In the present book, we focus on the Python 3. However, there are 
many applications using Python 2 also.

A second option to obtain Python is to download an IDE (Integrated 
Development Enviroment). This type of software enables the developer 
to write and to run the code in the same place, making it easier for 
continuum software development. In this regard, WinPython is a portable 
free IDE for development in Python on Windows. It is specifically aimed 
at educational and scientific purposes. It comes with the following pieces 
of softwares:

• IDLEX (Python GUI): IDLE stands for Integrated Development 
Environment.It is a simple and suitbale IDE for development 
in Python, with features such as multi-window, syntax 
highlighting, integrated debugger with stepping, breakpoints, 
etc. IdleX is a collection of over twenty extensions and plugins, 
developed for additional functionality.

• IPython Qt console: It was developed to be a replacement 
for the standard Python shell, or it can be used as a complete 
working environment for scientific computing (like Matlab or 
Mathematica) when paired with the standard Python scientific 
and numerical tools. Among its features, it may be mentioned 
dynamic object introspections, numbered input/output 
prompts, a macro system, session logging, session restoring, 
among others.

• Jupyter Notebook: An open-source web application that 
allows the developer to write and share documents that contain 
live code, equations, visualizations and explanatory text. 
Uses include: data cleaning and transformation, numerical 
simulation, statistical modeling, machine learning, etc.

• Spyder: The name of this software stands for Scientific 
Python Development Environment. Is an interactive testing, 
debugging and developing framework with the possibility of 
using scientific computing tools such as numpy, scipy and 
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matplotlib. 
• WinPython command prompt: A command prompt with 

integrated python environment.
• Winpython powershell prompt:A PowerShell is a more 

powerful, feature-rich and more customizable shell than the 
WInPython command prompt. 

• WinPython Control Panel: It can be used to manage installed 
packages, such as numpy or pandas. And it also allows advanced 
tasks, such as registering extensions, icons and Windows 
explorer context menu to a specific Python distribution.

• Winpython Interpreter: Use to assicate extensions to 
WinPython..

• Qt designer: A tool to develop Graphical User Interfaces using 
Qt components. The development of the interface can be done 
in a what-you-see-is-what-you-get (WYSIWYG) manner, and 
test them using different styles and resolutions.

• Qt linguist: A tool to translate Qt C++ and Qt Quick applications 
into local languages.

Python primer
To start developing Python code, one can open an empty text file and 
start writing it. Another option is to start a Python shell and write the 
code, which is computer interactively. While this second approach is 
more straight forward for short code and simple calculations, the former 
one is much more useful for complex code and more “perennial” code.

The first code presented here is a classic example, the Hello World. It 
simple prints in the screen the phrase “Hello World”, or any other phrase 
that the developer may want, just by changing the words. To do so, one 
has to create an empty text file, naming it as “HelloWorld.py” (note 
the extension .py instead or the .txt extension). Once the file is opened, 
simply type the following code:
print(“Hello World”)
Save and close the file. There are two ways of running this program. One 
is by calling the command prompt, moving it to the folder where the file 
HelloWorld.py is saved and typing the following command:
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python HelloWorld.py
If the python is correctly installed and everything works well, the 

window should print the phrase “Hello World” and then return so the user 
can continue typing.

A second option is to run the code in an IDE, for example using the 
IDLEX in WinPython package. One the IDLEX software is started, the 
following windows appears in the screen

Figure 43: IDLEX window.

Every code typed in the IDLEX windows will appear after the >>> 
symbol. This IDE can also be used as a calculator. For example, the 
following calculation can be performed using IDLEX:

Figure 44: IDLEX as a calculator.
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In the figure above, the Python language was used to calculate the 
sum of two numbers in a similar that is done using any calculator.

To run the HelloWorld program using the IDE, navigate to the File > 
Open… and find the file “HelloWorld.py”. It opens in a similar way that a 
text editor opens, but there are a variety of options in the toolbar, as well 
as it is noticeable that the code is syntax highlighted. To run this code 
inside IDLEX environment, simply navigate to Run < Run Module. The 
result of the program is printed in the IDELX main window.

Syntax basics
Any variable defined in Python store references to objects in the memory. 
The names attributed to the variables are called identifiers. In python, the 
following set of rules defines how to proceed in order to give a valid 
name to a variable:

• The first character of any identifier can be a letter (ex: a or A) 
or an underscore (_). The use of a number is not valid.

• Identifiers can be generated by a combination of letters, digits 
and underscores.

• Identifiers can be of any length.
• The following expressions are keywords in python, and 

therefore can not be used to generate identifiers.

False class finally is return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
pass else import assert break
except in raise

Values are assigned to variables using the “=” in a similar way that is 
done in mathematics. For instance, to attribute the value 10 to a identifier 
x, simply type x = 10. Python is able to dynamically identify the type of 
a variable. This means that it is not necessary to explicit declare x as a int 
variable, for the Python can automatically recognize it. In Python each 
and everything is an object or an instance of a class.
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Comments are typed starting with a # symbol. Anything written 
after such symbol is ignored by the interpreter, and only used for code 
documentation and sharing. 

One line of code can be used to assign multiple variables. For 
example, the following code statement is valid in Python:

Var1, var2, var3 = val1, val2, val3
• Python has 5 basic data types:
• Numbers

o Int: integer values (1, 2, 100)
o Float: for floating point values (1.1, 3.14, 100.0)
o Complex: complex numbers (1+2j)

• Strings: series of characters
• List: a series of numbers
• Tuple: a fixed series of numbers
• Dictionary: store key value pairs
• Boolean: true or false values
Basic mathematical operations can be performed in Python using the 

following list of symbols:

Symbol Definition Application Output

+ Addition 3 + 1 4

- Subtraction 3.0 - 0.1 2.9

* Multiplication 3.0 * 0.1 0.3

/ Division 3.0 / 0.1 30.0

// Integer division 1 // 2 0

** Exponentiation 4 ** 0.5 2.0

% Reminder 10 % 3 1

Similar mathematical operations can be performed in strings. For 
example, strings index starts at 0 (zero). To access one element of a 
string, one can do the following operation:
>>> mystring = “Hello World”
>>> mystring[0]
‘H’
The + operator is used to concatenate strings as follows:
>>> mystring_part1 = “Hello”
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>>> mystring_part2 = “World”
>>> mystring_part1 + mystring_part2
‘HelloWorld’

The * operator is used to generate a repetition of the string for a 
defined amount of times, such as in the following example:
>>> mystring_part1 * 2
‘HelloHello’

If one tries to use the * operator between two strings, then Python 
generates an error.

The slicing operator [] can be used to retrieve a single character of 
a string, as shown before, as well as to get part of a string using the 
following syntax:
Mystring [start : end]
Which will return the part of the string starting in start and ending in end-
1, as in the following example.
>>> mystring_part1[0:3]
‘Hel’
>>> mystring_part1[2:]
‘llo’

Strings can be compared using the following set of operators. The 
strings are compared lexicographically, i.e Python compares using ASCII 
values of the strings.

Symbol Definition Application Output
< Less than "John" < "Mary" True
> Greater than "John" > "Mary" False
<= Less or equal than "John" <= "Mary" True
>= Greater or equal than "John" >= "Mary" False
== Equal "John" >= "Mary" False
!= Not Equal "John" >= "Mary" True

A List in Python can be defined as a collection of numbers which 
somehow are naturally grouped together. For example, all the measures 
of mass of different samples may be gathered together in a single list. The 
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use of list implements flexibility since one can work with all numbers at 
once, or with numbers individually. 

A list can be generated by writing the values inside square brackets 
and separating the numbers by comma.

mylist = [ 1, 2, 3.2, 700, 9.3]
The single variable mylist refers to a list of five elements. An 

index associates the position of the elements in the list with its value 
individually or in a subgroup. Like a string, the first index of a list is 0, 
and the following elements are monotonically increasing (0, 1, 2, 3, 4, 
5, …).

Alternatively, a list can be composed of strings, as in the following 
case:
mylist = [ “string 1”, “string 2”, “string 3”]

Or even a mixture of strings, numbers or any other different types, 
such as in the following example:
mylist = [ “string 1”, 4, [1,2,3]]
There are other ways of creating lists:
mylist = list() # create an empty list
mylist = list([1,2,3]) # create an empty list

Dictionaries are a special type of python data, which associates 
values with keywords, enabling quick retrieve, addition, removal or 
modification of the keys. While lists are created with square brackets, the 
dictionaries are created with curly brackets.

Each item in the dictionary consists of a key, followed by a “:” symbol 
and the value associated with it. The pairs are separated by comma.
mydictionary = {
’key1’: 1.12,
’key2’: “thing”



Object-oriented Modelling for Scientific Computing172

}
The exemplified dictionary above has two keys (key1 and key2) with 

the attributed values for it (the first one a floating number and the second 
a string). Optionally an empty dictionary can be created by using the 
curly brackets without any argument inside it.

My_empty_dictionary = {}
The value associated with a key can be retrieved by using key inside 

square brackets. The following code exemplifies this method.
>>> mydictionary = {
 ‘key1’: 1.1,
 ‘key2’: “any text here”
 }
>>> mydictionary[‘key2’]
‘any text here’

Items can be deleted from a dictionary using the del keyword. In the 
previously created dictionary, writing “del mydictionary[‘key1’]”. 

Tuple is a special type of Python list, in which the values inside it can 
not be modified, deleted or added, replaced or reordered. This means that 
Tuples are immutable.

A Tuple can be created by inserting values inside a parenthesis ( ). 
An empty tuple can be generated by opening and closing the parenthesis 
without any value inside it.
>>> mytuple = ( ) # empty tuple
>>> mytuple = (1 ,2 3 ) # tuple with three arguments

Some common operations that are performed in lists can also be 
performed in tuples, such as obtaining the maximum value (max( )), the 
minimum value (min( )), indexing using slicing operator among others.

Loops

While loop
The while loop is used to repeat a set of statements as long as a condition 
is true (Langtangen, 2009). In Python, this type of programming block is 
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implemented using the keyword while and indenting the code inside the 
block, as in the following example:
T = 20
dT = -5
while T > 0:
# here the block performs some mathematical operations
T = T + dT # the value of T is updated at each time the 
loop runs

An important feature in Python language is code indentation. Any 
code inside a block must be with the same indentation, otherwise the 
program does not run, or it does not perform what it is expected for. The 
first statement coinciding with the indentation of the while loop runs only 
after the loop has completely executed.

For loop
For loops are programming structures similar to the while loop, in the 
sense that a block of code is repeated until a certain condition is met. But 
for loops are easier to be used when walking through each element in a 
list to run the same block of code. For example, suppose it is  necessary to 
print in the screen all the elements of a list of voltage data. The following 
code can be used:
voltage = [1.0, 2.0, 7.0, 12.0]
for V in voltage:
print(‘The voltage of the element is:’,V,’V’)
print(‘------------------’)

The for V in voltage construct generates a loop over each element 
in the voltage list. At each time the loop restarts, the variable V refers 
to an element in the list, starting with voltage[0], voltage[1] and so on. 
The loop repeats until it the reaches the last element (voltage[n-1] with n 
being the number of elements in the list).

Branching
Branching or flow control statements are programming structures used 
to dictate if a block of code should run or not, according one or more 
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conditions that should be met. In many programming languages, as well 
as in Python, a grammatically similar to human language structure is 
used, the if.. else block.

If… else blocks are used to test if a condition is true, and in positive 
case it runs the block of code inside the if part. The else block is used in 
case the tested conditions is false. For example, consider the following 
code:
voltage = 220.0
if voltage < 220.0:
print(‘voltage is low’)
else:
print(‘voltage is not low’)

The code above prints the statement “the voltage is low” if the variable 
voltage carries a value which is less than 220. On the other side, in case 
the voltage is anything other than less than 220, it prints the statement 
“the voltage is not low”. Maybe it is high, or maybe it is exactly equal 
220.  The only thing that the condition block above tests is IF the voltage 
is less than 220, anything different from that is thrown to the else code 
block. In summary:
if <condition>:
 # block of statements if condition is TRUE
else:
 # block of statements if condition is FALSE

Additionally, more conditions can be tested. Suppose in the voltage 
example above, that we need to test not only if the voltage is less than 
220, but also if it is exactly equal to 220. The if else block can be extended 
with the elif keyword, which means else if, as in the example below.
voltage = 220.0
if voltage < 220.0:
 print(‘voltage is low’)
elif voltage == 220.0:
 print(‘voltage is exactly equal to 220’)
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else:
 print(‘voltage is not low’)

Optionally the else block can be skipped. In this case, if no condition 
is met, then the program jumps to the code after the if else block. If the 
if else block is very simple, it can be written in a condensed form using a 
single line, as in the following case:
# <code to run> if <condition> else # <code to run>

File handling
File handling refers to the technique of operating over files, opening, 
reading and/ or writing and closing afterwards. The syntax for opening 
a file is:
fileidentifier = open(filename, mode)
the fileidentifier is a file handler or file pointer generated using open with 
filename (a string with the path of the file) and the mode used to open the 
file. After operations on a file, it is important to close the file. The syntax 
for doing so is:
fileidentifier.close() # fileidentifier is the file pointer

The different modes that a file can be opened are summarized in the 
following table. 

Mode Syntax Description

Read-only “r” Open a file for read only

Write-only “w” Open a file for writing. All the data 
in the file is cleared after the file is 
opened. If the file does not exist, 
then it is created.

Append “a” Write data at the end of the file.

Binay Write “wb” Open a file to write in binary mode.

Binary Read “rb” Open a file to read in binary mode,

Functions
A function in computer programming can be defined as a set tasks 
performed according some inputs, and generating some output. In Python, 
functions are defined using the keyword def. The keyword return is used 
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to express which value(s) is(are) returned as output after the code runs. 
For example, suppose the following equation

Which is the equation used to calculate the space where an object 
moving uniformly accelerated is located. A function can be defined 
where the user provides the initial position ( 0s ), the initial velocity ( 0v ), 
the constant acceleration ( a )  and it gets as result the actual position ( s ) 
as well as the actual velocity ( = +ov v at), defined as:

= +ov v at

In Python a function to obtain this values can be written as:
def func_s(s0,v0,a,t):
    i = 1
    v = list([v0])
    s = list([s0])
    while i<t+1:
        v.append(v0 + a*i)
        s.append(s0 + v0*t + (a*i**2)/2)
        i += 1
    return s,v

The first line defines the name of the function (func_s) followed by 
the arguments that the function receives as inputs: the initial position 
(s0), the initial velocity (v0), the constant acceleration and the time of 
simulation.

The second line initializes the variable which will be used to iterate 
and calculate the position and the velocity at each time step. Following 
the list of velocities (v) and position (s) is also initialized with the initial 
position and velocities.

The while loop is used to obtain the value of position and velocity at 
each time step. The last line of the function with the keyword return says 
which variables will be returned by the function, which are the lists of 
velocities and positions (s and v).
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To use the function is necessary to give the necessary inputs and 
to use the outputs somehow. A complete program which calculated the 
positions and velocities and print them in the screen is given below.
print(‘-------------’)
print(‘Movement Calculator’)
print(‘-------------’)
def func_s(s0,v0,a,t):
    i = 1
    v = list([v0])
    s = list([s0])
    while i<t+1:
        v.append(v0 + a*i)
        s.append(s0 + v0*t + (a*i**2)/2)
        i += 1
    return s,v
s0 = 0.0
v0 = 0.0
a = 2
t = 10
s,v = func_s(s0,v0,a,t)
print(‘Position: ‘,s)
print(‘Velocity: ‘,v)

Once this code (named as calculatespace.py) runs, the following 
output is obtained:
calculatespace.py 
-------------

Movement Calculator
-------------
Position:  [0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0]
Velocity:  [0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0]

The function used to calculate the position and velocity are useful 
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for reuse, in the sense that different parameters (input arguments) can 
be given to the function to analyses different outputs obtained through 
it. The following code exemplifies the evaluation of this code for two 
different accelerations.
print(‘-------------’)
print(‘Movement Calculator’)
print(‘-------------’)
def func_s(s0,v0,a,t):
    i = 1
    v = list([v0])
    s = list([s0])
    while i<t+1:
        v.append(v0 + a*i)
        s.append(s0 + v0*t + (a*i**2)/2)
        i += 1
    return s,v

s0 = 0.0
v0 = 0.0
a = [2.0, 1.0]
t = 10.0

s,v = func_s(s0,v0,a[0],t)
print(‘Acceleration: ‘,a[0])
print(‘Position: ‘,s)
print(‘Velocity: ‘,v)
s,v = func_s(s0,v0,a[1],t)
print(‘Acceleration: ‘,a[1])
print(‘Position: ‘,s)
print(‘Velocity: ‘,v)

Note that, by transforming the acceleration variable, from a single 
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value to a list of values (2 and 1) it was only necessary to add one line of 
code to test the function with the new conditions (s,v = func_s(s0,v0,a[1],t)) 
and the following three lines are screen output. When this code is run, 
one obtains the following output:
calculatespace.py 
-------------
Movement Calculator
-------------
Acceleration:  2.0
Position:  [0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0, 100.0]
Velocity:  [0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0]
Acceleration:  1.0
Position:  [0.0, 0.5, 2.0, 4.5, 8.0, 12.5, 18.0, 24.5, 32.0, 40.5, 50.0]
Velocity:  [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]

This type of problem exemplifies the flexibility and extensibility 
of the functions in Python, especially for cases where it is reused with 
difference input arguments.

A convention in Python is to develop documentation for user-defined 
function. This is done by adding comments to the begging of functions 
after its definition. The documentation string, known as a doc string, 
should contain a short description of the purpose of the function and 
explain what the different arguments and return values are. Interactive 
sessions from a Python shell are also common to illustrate how the code 
is used. Doc strings are usually enclosed in triple double quotes “””, 
which allow the string to span several lines (Langtangen, 2011).
def func_s(s0,v0,a,t):
    “””
    Function calculates space and position
    Of an object in uniform accelerated motion
    s0 - Initial position
    v0 - Initial velocity
    a - constant acceleration
    t - time span
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    return:
    s - velocity vector
    v - velocity vector
    “””
    i = 1
    v = list([v0])
    s = list([s0])
    while i<t+1:
        v.append(v0 + a*i)
        s.append(s0 + v0*t + (a*i**2)/2)
        i += 1
    return s,v

Classes and objects
As already mentioned in the previous chapter, a class packs a set of data 
with a collection of methods or function which operates in this data. 
In this way, data and methods are grouped to achieve more modularity 
and because of that, a better organization in complex and continuously 
growing projects.

In many cases, the use of classes is not mandatory. However, 
the implementation of such a technique allows more elegant code 
development and the fact that the code becomes modular makes it easier 
to grow at a later stage.

In scientific computing, the most common application of classes is 
to represent function, incorporating its parameters as part of the class 
members and the equation itself as one or more methods inside the class. 
To exemplify one may consider the equation of uniformly accelerated 
motion used in the previous section. In this case, the initial position and 
velocity as well as the acceleration may be considered parameters of the 
class. 

In Python, a class usually has a constructor, which is a special 
function that runs when an instance of the object is created. The syntax 
of a constructor is given in the following form:
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__init__
The class for the uniformly accelerated motion can be represented 

using UML notation, as shown below:

Figure 45: A Class for the uniformly accelerated motion.

In the above representation, we chose to call the developed class as 
UniformObject, for it represents a generic object that behaves according 
the uniform motion equation described above. This class has as attributes 
its position (which will be the initial position when the equation is 
calculated), its current velocity (which will be the initial velocity when 
the equation is calculated). The __init__ method is the constructor 
method, and the value method is used to obtain the new position of the 
instance once the equation is evaluated.

The following code shows an initial implementation of the class 
Uniform Object in Python:
class UniformObject:
    def __init__(self,s0,v0,a):
        self.position = s0
        self.velocity = v0
        self.acceleration = a
    def value(self,t):
        newposition =  s e l f . p o s i t i o n + s e l f . v e l o c i t y * t + s e l f .
acceleration*t**2/2
        newvelocity = self.velocity*t+self.acceleration*t
        return newposition, newvelocity
    def formula(self):
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        print(‘s0 + v0*t + a*t**2/2’)
As already mentioned, the __init__ function is runs when the user/ 

developer tries to create an instance of the UniformObject class. It 
attributes the data to the class members accordingly. The value () method 
is used to calculate the evolution of space and velocity of the object under 
the designated law of motion. This function takes as argument the time 
t of simulation in order to obtain the new position and velocity of the 
object. At least the formula () method just prints the formula used in the 
class. Changing the formula in this last method will not change how the 
motion is calculated, and it is just used as an informative piece of data.

The following code exemplifies the application of the UniformObject 
class to calculate the positions and velocities of an object under the law 
of motion with different times of simulation.
s0 = 0
v0 = 0
a = 2
uobject = UniformObject(0,0,2)
print(“object started at position “, uobject.position, “m, velocity “,
      uobject.velocity,”m/s and acceleration “, uobject.acceleration, “m2/s.”)
t = 10
s,v = uobject.value(t)
print(“at time “, t, “s, object position is”, s,”m, velocity “,
      v,”m/s and acceleration “, uobject.acceleration, “m2/s.”)
uobject.formula()
t = 20
s,v = uobject.value(t)
print(“at time “, t, “s, object position is”, s,”m, velocity “,
      v,”m/s and acceleration “, uobject.acceleration, “m2/s.”)
uobject.formula()

The code mentioned above generates the following output:
unformobject.py 
object started at position  0 m, velocity  0 m/s and acceleration  2 m2/s.
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at time  10 s, object position is 100.0 m, velocity  20 m/s and acceleration  
2 m2/s.
s0 + v0*t + a*t**2/2
at time  20 s, object position is 400.0 m, velocity  40 m/s and acceleration  
2 m2/s.
s0 + v0*t + a*t**2/2

The correctness of the algorithm can be tested by manual calculation 
or using a spreadsheet.

Now we would like to have a more generalized object, which does 
not only perform uniformly accelerated movement, but actually any type 
of motion (accelerated, deaccelerated, constant velocity). To do this, it is 
necessary to remember the following concepts of motion:

2

2   = =
d s dv

a
dt dt

  = ds
v

dt

Where a  is the acceleration (m²/s) , s  is the velocity (m/s) and s  is 
the position (m). We may apply Backward Euler time integration to solve 
this equation and find the velocity, the acceleration and the position at 
each instant of time. The Backward Euler algorithm reads:

( ),=
dy

f y t
dt

Replacing the Backward Euler algorithm in the laws of motion, one 
obtains:
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So at each time step of simulation the new value of position and 
velocity can be obtained with the instaneous acceleration is defined. The 
accuracy of the algorithm depends on the time step (Dt) used. The object-
oriented approach will help to evaluate the accuracy of different time 
steps. The problem is defined by assuming a relation of acceleration with 
time and assuming the initial conditions:

( )0 0= =s t

( ) ( )0 0 0= = = =
ds

t v t
dt

The following figure illustrates the relation acceleration x time:

Assuming a constant acceleration different from zero, the motion 
is said to be uniformly accelerated. In this case the analytical solution 
is well known and was already shown above. A class was developed 
incorporating the derivative equations of motion. The code is shown 
below. 
import numpy as np
class MovingObject:



Object-Oriented Development and Programming 185

    def __init__(self, s0, v0, t, a):
        self.position = [s0]
        self.velocity = [v0]
        self.velocitytime = []
        self.accelerationtime = t
        self.acceleration = a

    def dds(self, t, x):
        return np.interp(t, self.accelerationtime, self.acceleration)
    
    def ds(self, t, x):
        return np.interp(t, self.velocitytime, self.velocity)    
        
    def get_initvelocity(self):
        return self.velocity[0]

    def get_initposition(self):
        return self.position[0]

First, it is necessary to import a package very useful for numerical 
computing, the numpy. This package contains a variety of useful methods 
to be used in scientific computing. In the present case, it is used the 
interpolation method from numpy.

The class Moving Object has four class members: the position 
vector, the velocity vector, a vector of the time that the velocity data is 
recorded, a vector of the time that the acceleration data is recorded and 
the acceleration vector.

The class defines four methods. The first method (dds) as the name 
suggests, calculates the second derivative of the position, which is the 
acceleration value. This value is obtained by interpolating the table of 
time x acceleration stored in the instance of the class. Here the package 
numpy is used to perform that calculation.
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The second method (ds) is used to calculate the first derivative of 
the position, which is the value of the velocity at each time step. An 
important feature to be clarified is that the first derivative in this case can 
only be calculated once the second derivative is considered. Again, the 
value of the velocity is obtained by interpolating in the table of time x 
velocity stored in the instance of the class.

The third method is used to retrieve the initial condition on the 
velocity. Although this method is optional, it keeps the program more 
clear and elegant. The same principle applies to the last method, which is 
used to get the initial position of the instance of the class.

To integrate the derivative equations, as already mentioned, we 
implement Backward Euler algorithm. In an object-oriented approach, a 
class can be implemented to perform this calculation. The following code 
refers to the developed class.
class BackwardEuler:
    def __init__(self, f, t0, N, dt):
        self.f = f
        self.t0 = t0
        self.N = N
        self.dt = dt
        self.x = []
        self.t = []
    def integrate(self, x0):
        x = x0
        t = t0
        self.record(x0, t0)
        while t < N*dt:
            t = t + dt
            dx = self.f(t, x)
            x = x + dt * dx
            self.record(x, t)
    def record(self, x, t):
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        self.x.append(x)
        self.t.append(t)

The class Backward Euler has six class members. The first member 
(f) refers to the derivative function to be integrated. Namely:

( ),=
dy

f t y
dt

The second member stored the initial time used to perform the 
integration. This time must be the same as the time that the initial 
conditions of velocity and position were obtained. The third member (N) 
is the number of steps of integration. The fourth member defines the time 
step of integration, or the difference in time between two subsequent 
steps.

The fifth and sixth members store the calculate state and time after 
the solver calculates it. This data can be retrieved to be analyzed, plotted 
and saved.

Two methods, besides the constructor ( __init__ ) are implemented 
in the Backward Euler class. The first method, integrate is the core of the 
solver and it performs the time integration according the algorithm. At 
each iteration of the while loop, the new state is calculated and stored in 
the instance of the class by calling the record () method.

In order to be able to test the accuracy of the method and of different 
time steps, a simple function is implemented to calculate the analytical 
values of position and velocity at each time. The code of the function is 
the following:
def func_s(s0, v0, t0, a, N, dt):
    s = [s0]
    v = [s0]
    t = [t0]
    while t[-1] < N * dt:
        t.append(t[-1] + dt)
        s.append(s0 + v0 * t[-1] + a * t[-1] ** 2 / 2)
        v.append(v0 + a * t[-1])
    return s, v, t
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After the classes and the previous function are defined, the following 
program can be written to calculate the position of an object using the 
integration algorithm and comparing two different time steps: 1 second 
and 0.5 seconds.
import matplotlib.pyplot as plt

s0 = 0.0
v0 = 0.0
a = [2.0, 2.0]
t = [0.0, 20.0]
uobject = MovingObject(s0, v0, t, a)

t0 = 0.0
N = 20.0
dt = 1.0
analy_s, analy_v, analy_t = func_s(s0, v0, t0, a[0], N, dt)

solver1 = BackwardEuler(uobject.dds, t0, N, dt)
solver1.integrate( uobject.get_initvelocity() )
uobject.velocity = solver1.x
uobject.velocitytime = solver1.t

solver2 = BackwardEuler(uobject.ds, t0, N, dt)
solver2.integrate( uobject.get_initposition() )

s0 = 0.0
v0 = 0.0
a = [2.0, 2.0]
t = [0.0, 20.0]
uobject = MovingObject(s0, v0, t, a)
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t0 = 0.0
N = 40.0
dt = 0.5
solver3 = BackwardEuler(uobject.dds, t0, N, dt)
solver3.integrate( uobject.get_initvelocity() )
uobject.velocity = solver1.x
uobject.velocitytime = solver1.t

solver4 = BackwardEuler(uobject.ds, t0, N, dt)
solver4.integrate( uobject.get_initposition() )

handles = plt.plot(t, a, ‘r--’)

plt.xlabel( ‘time (s)’ )
plt.ylabel( ‘Acceleration (m²/s)’ )
plt.grid( True )
plt.savefig( “Acceleration.png” )
plt.show( )

handles = plt.plot(analy_t, analy_s, ‘r--’, solver2.t, solver2.x , ‘g^’, 
solver4.t, solver4.x , ‘b^’)

plt.xlabel( ‘time (s)’ )
plt.ylabel( ‘Position (m)’ )
plt.legend( handles, [‘Analytical’,’dt = 1’,’dt = 0.5’])
plt.grid( True )
plt.savefig( “PositionBEdt1.png” )
plt.show()

In the first line of the code, the package matplotlib is imported to be 
used to generate graphical output of the results. Documentation of this 
package can be found in the web address: https://matplotlib.org/. 
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The following figure illustrates the graphical output of the program 
above, where it is compared the results of the position using the analytical 
solution, a backward euler algorithm with time step of 1 second, and the 
backward euler algorithm with 0.5 second.

As expected, the use of a smaller time step generates better results 
(with less error in comparison with the analytical solution) than the bigger 
time steps. To show the capability of generalization of the algorithm, it can 
be used to calculate the position of the moving object using any function 
of the acceleration with time. Let’s assume the following acceleration x 
time profile.
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In the acceleration profile above, it can be seen that the object has 
an increasing acceleration in the time interval of 0 to 5 seconds. Then 
it starts to deaccelerate until it reaches an acceleration of -7 m²/s, which 
means that the object reduces significative its velocity, possibly even 
reaching negative velocity (the object goes backward). From 10 seconds 
up to 20 seconds it accelerates again, until it reaches the acceleration of 
4m²/s. In Python, the acceleration and time lists were defined as:
a = [2.0, 4.0, -7.0, -1.0, 4.0]
t = [0.0, 5.0, 10.0, 15.0, 20.0]

By using the same program that was developed before (just changing 
the acceleration and time lists as defined above), the obtained result for 
the position and for the velocity are shown below:
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As it was already expected by looking in the acceleration profile, the 
object does not only move forward, but approximately at 10 seconds, an 
inflection in the position and the negative values of the velocity profile 
shows that the object moves backward, and it continues to do so until the 
end of its movement.

The above example shows a simple but elegant and useful 
implementation of object-oriented programming in Python to solve 
scientific computing problems. In the following section we go a bit 
further in this subject.

Class Hierarcy – Extending a class
On this section, it is show how Python can be used to generate classes 
derived from more generic ones, and how this functionality can spare 
time and make complex programs simpler to be written

To start with an example, consider the following class for first order 
polynomials, or straight lines, according the following equation template:

0 1= +y c c x

Where 1 c  and 1 c are parameters of the equation, i.e class data 
members, and x is an independent variable. Naturally, y  is the dependent 
variable. The class developed in Python for this type of polynomial could 
be written as follows:
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import numpy as np
class Line:
    def __init__(self, c0, c1):
        self.c0 = c0
        self.c1 = c1

    def __call__(self, x):
        y = self.c0 + self.c1*x
        return y

The class defines two methods. The first one (__init__) is the 
constructor method and initializes the values of the parameters of the 
line. The second method (__call__) calculates the value of dependent 
variable given a dependent variable value.

One important thing to mention at this point is the special method 
__call__. This method is used to refer to the object in a special way. 
By implementing it, an object instance can perform a task using the 
following syntax:
Myobject( )
As an example, the usage of the line class can be done as follows:
c0 = 1
c1 = 2
myline = Line(c0, c1)

x = 1
y = myline(x)
print(“x = “,x,” y = “, y)

Suppose now that it is desired to extend the functionality of the Line 
class, by making it able to calculate a parabola function (a second order 
polynomial). In this case there are basically three possibilities:

• To write a whole new function from scratch: For a simple case 
such as the present one, this solution may not be the worst and it 
is relatively easy. Nonetheless, the repetition of the same code 
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that was already written in the Line class is not recommended 
and should be avoided.

• To rewrite the Line class: This is also a simple and easy task 
to implement. However, the code that may have already been 
written using the Line class may have to be rewritten in order 
to work with the new version of the class, and this can be a 
very hard task. So, this procedure should also be avoided.

• To write a new class that incorporates the features already 
implemented in the Line class and brings the necessary new 
features to perform the desired calculations. This type of 
programming is referred to as inheritance, and is the best 
procedure to be followed in problems such as these.

In Python, the nomenclature used to derive a child class from a parent 
class follows the specification below:
class ChildClass (ParentClass)

So, in this specific case of the child Parabola class, the definition of it 
will be written as follows:

class Parabola (Line)
Which means that the new class, Parabola, is a child class from Line 

and it inherits its class members and functions, invisibly. Naturally, the 
class Parabola will not be an exact copy of the Line class, but it should 
extend the constructor by incorporating extra class members, and the __
call__ method is also changed by using the parabola equation as follows:

2
0 1 2  = + +y c c x c x

In the equation, it is clear that the class members 0c  and 1c  are 

inherited from the Line class, while the parameter 2c  will be added to 
this new class. In order to avoid repeating the same code of the parent 
class, the following syntax should be used to call the methods of the 
parent class:

ParentClass.methodname( self, arg1, arg2, …)
The following code shows how the Parabola class is defined, and the 

repetition of already implemented code in the Parent class is avoided by 
using the syntax shown above.
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class Parabola(Line):
    def __init__(self, c0, c1, c2):
        Line.__init__(self, c0, c1)
        self.c2 = c2

    def __call__(self, x):
        return Line.__call__(self, x) + self.c2*x**2

In the constructor method, the constructor of the parent class is called 
so as to handle the two class data members that are equal on the Line class 
and the Parabola class. In this way, rewritten the same code is avoided. 
The same principle is applied in the __call__ method, where the same 
function is called from the parent class and it is added the additional 
value so as to obtain the results of a parabola equation, and not a line.

Another approach to solve the same problem would be, instead of 
extending the functionality of a Line, to restrict the Parabola. If we think 
of a Line in the point of view of a Parabola equation, the line equation 
can be written as:

2
0 1 0= + +y c c x x

So, it can be said that a line is a parabola with the parameter 2c  set to 0 (zero). In 
this sense, the Parabola class would be written as:

class Parabola:
    def __init__(self, c0, c1, c2):
        self.c0 = c0
        self.c1 = c1
        self.c2 = c2

    def __call__(self, x):
        y = self.c0 + self.c1*x + self.c2*x**2
        return y

And the Line class would be a child class from the Parabola, according 
the following code:
class Line(Parabola):
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    def __init__(self, c0, c1):
        Parabola.__init__(self, c0, c1, 0)  

Here, only the construction need to be overridden, since it is explicitly 
defined that the last parameter of the Parabola must be set to 0 (zero). The 
__call__ is just the same, so there is no need to rewrite it.

The concept of the approach to be used (from Line to Parabola or 
from Parabola to Line) can be extended to any problem in general, using 
a perspective of inheriting class from a simpler to a more complex one, 
or vice versa. In general, it is natural to think that new classes will inherit 
from simpler, more generic class. However, not necessarily the generic 
classes will be simpler, and the way that a problem will be solved depends 
on how the problem is seen by the developer. There is no right or wrong.

Application in Scientific Computing
Bahn et al. (2002) developed an object-oriented scripting interface to a 
mature density functional theory code. The advantage of using an object-
oriented approach is highlighted by the authors, in the sense that there 
was no need to rewrite the underlying number-crunching code. The paper 
shows in detail the advantages and disadvantages of the homogeneous 
interface.

Adams et al. (2002) developed a software package called PHENIX, 
meaning Python -based Hierarchical ENvironment for Integrated 
Xtallography. The software is used for crystallographic macromolecular 
structure determination. According the authors, the developed software 
will be able to provide algorithms to proceed from reduced intensity 
data to a refined molecular model and making easier to define structure 
solution for both the novice and expert crystallographer.

In 2007, Pierce created the PsychoPy, a platform-independent 
experimental control system written in the Python interpreted language 
using entirely free libraries. The author mentions that the motivation 
to develop such software is the fact that computer display technology 
is a major contributor to the studies in visual processing. The software 
package provides tools that allows a variety of different exercises, from 
stimulus presentation and response collection from a big range of devices, 
to simple data analysis such as psychometric function fitting.
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In the field of Bioinformatics, Sukumaran & Holder (2010) 
contributed by creating a Python library for phylogenetic computing, 
called DendroPy. The software provides object-oriented reading, writing, 
simulation and manipulation of phylogenetic data, with an emphasis 
on phylogenetic tree operations. Special features are used in order to 
perform efficient calculation of tree distances, similarities and shape 
under various metrics. The framework supports a variety of phylogenetic 
data formats (NEXUS, Newick, PHYLIP, FASTA, NeXML, etc.).

One work already mentioned in the UML chapter, Perez et al. (2012) 
developed pyOpt, a Python framework focused on non-linear constrained 
optimization. A distinction is maintained between the problem and 
the solver, which provides high flexibility to the framework. Different 
optimization algorithms are implemented in pyOpt and are accessible in 
the common interface. The authors demonstrate the applicability of the 
developed framework by solving a variety of problems with different 
levels of complexity.

The object-oriented programming has been shown useful for 
macromolecular simulation and design through the implementation of 
Rosetta3 by Leaver-Fay et al. (2014). Rosetta3 is a molecular modeling 
program, freely available for academic use. Its architecture enables the 
rapid prototyping of novel protocols by providing easy to use interfaces 
to powerful tools for molecular modeling. 

MODELICA
Modelica is a programming language focused on the development and 
simulation of mathematical models of complex nature or man-made 
systems. It is an object-oriented and equation based programming 
language. According Fritszon (2003), the four main characteristics of 
Modelica are:

The flow of data is acausal, since the language is equation-based 
instead of statement based. This feature enables the reuse of classes and 
more adaptability of one model for different contexts.

Its features englobes physical objects from a diversity of domains: 
electrical, mechanical, chemical, biological and mathematical application 
are only some of the domains which can be studied using Modelica.
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The language possesses a generic unified class component
It is strongly based on component modelling, with constructs for 

creating and connecting components, making the development of 
complex systems easier than other programming languages.

The history of its development started in 1996 with the PhD thesis of 
Hilding Elmqvist. He and a group of programmers started to work together 
in the area of object-oriented modelling technology and applications. The 
initial goal was to write a paper on the existing technologies on object-
oriented programming, including an investigation on the possibility of 
unifying existing modeling languages, as part of the ESPRIT project 
Simulation in Europe Basic Research Working Group (SiE – WG).

In a short period of time after the work has started, the focus of those 
involved in the project shifted from simple providing a revision on the 
state-of-the-art, to start to develop a novel unified modeling language 
based on the whole experience of tool designers, application experts and 
computer scientists. The design started from scratch, and a new name 
was given to the language: Modelica.

The group founded the Technical Committee 1 inside EuroSim. Not 
much later, in February 2000, the Modelica Association was estabilished 
as a non-profit organization with international projection and focused 
on promoting and maintain the development and propagation of the 
Modelica Language and Modelica Standard Libraries.

Obtaining a Modelica IDE
In order to use Modelica features, one needs to obtain a software for 
developing and simulating, which is able to read the Modelica code. The 
following list is a compilation of some commercial and free Modelica 
IDEs (Integrated Development Environment) available:

Table 2 – List of comercial IDEs for Modelica.

Software Provider Type Description

Simplorer ANSYS Commercial multi-disciplinary system 
modeling and simulation 
solution.
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Dymola Dassault Systèmes Commercial Modelica translator 
which is able to perform 
all necessary symbolic 
transformations for large 
systems.

SimulationX ESI ITI GmbH Commercial Software with graphi-
cally-interactive features 
for modeling, simulation 
and analysis of multi-
-domain systems from 1D 
to 3D.

MapleSim Maplesoft Commercial high-performance multi-
-domain modeling and 
simulation tool.

Wolfram 
System 
Modeler

Wolfram Commercial high-fidelity modeling 
environment that uses 
versatile symbolic compo-
nents and computation to 
drive design efficiency 
and innovation

Table 3 – List of free IDEs for Modelica.

Software Provider Type Description

JModelica.org --- Free extensible Modelica-based open 
source platform for optimization, 
simulation and analysis of com-
plex dynamic systems.

Modeliac ---- Free compiler for a subset of the Mo-
delica language including parts 
of the "equation" subset that can 
express relations between Real 
variables.

OpenModelica ---- Free complete Modelica modeling, 
compilation and simulation envi-
ronment based on free software.

Basic concepts of Modelica
Every system developed in Modelica is based on classes, also referred 
to as models. Once a class is defined, it is possible to any number of 
instances of the class, the objects. The classes define the blueprints of 
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the objects, which are to be “produced” through Modelica compiler and 
run-time system.

The Class is divided into components. The most relevant of them 
are the variable declarations and the equations sections. To illustrate, 
the following model is used to generate our first system, which behaves 
according the Linear ODE:

( ),  0 1.0= + =
dx

ax b x
dt

The variable x  is also called a state of the system. The time derivative 

(
dx

dt ) is represented in Modelica through the method der( ).  The above 
system can be written in Modelica according the following code:
class LTISystem
  Real x(start = 1);
  parameter Real a = 3;
  parameter Real b = 1;
 equation
 der(x) = a*x+b;
end LTISystem;

In OpenModelica, this model can be generated by going to File > 
New Modelica class and typing the above code. After this, one can go to 
Simulation > Simulation Setup and configure the start time and stop time, 
the solver and other options of the simulation. To exemplify, the above 
model was simulated from 0 to 2 using euler solver. The result is shown 
below:
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Figure 46: Result for the simulation of the simple LTISystem model.

The simulation can also be performed by opening the Command 
Prompt Compiler and writing the following directive:
simulate(LTISystem,stopTime = 2)

Looking again the definitions of the model LTISystem, it can be 
subdivided into two main parts: the first part declares the variables 
and parameters of the system. The keyword Parameter defines which 
variables are parameters, and omitting this word creates variables which 
are not view as parameters by the model. For instance, the variable x is 
not set as a Parameter. A initial value can be given to variables though 
it is optional. Not setting the initial value sets the variable to 0 at the 
beginning of the simulation.

The second block in the LTISystem model consists of the equations 
or the definitions on how the system behaves. As already mentioned, the 
declaration of derivatives of variables is done using the der( ) expression.

Comments can be given in the model to clarify the meaning of 
each block or line of code. They also make the job easier of a third 
party upgrading or working in the model, since descriptive text gives 
explanation of what means the components of the program.

A comment can be written inside double quotes (“ a comment “). 
Usually this type of comment is used in the same line as the model 
definition and variable declaration, documenting the program. They are 
reffered to as definition comments, for they are not completely ignored by 
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Modelica. In fact, these comments are used by Modelica programming 
environment to appear in menus or help texts for the user.

Another way of inserting comments is by using double slashes (/ /), 
and every text appearing after this symbol in a line is completely ignored 
by the compiler and serves only as documentation for the programmer. 
A third mode, which allows comments to span over many lines is by 
starting it with /* and ending it with */.

The last way of commenting is using the block Annotation. This block 
helps to create structured documentation for the model. It also provides 
graphical features for the model, i.e, Modelica is able to generate a 
representation of the model according definitions using the annotation. 
For example, the following code:
annotation(
    Diagram(graphics =
    {Polygon(origin = {-2, 4}, points = {{-44, 36}, {44, 36}, {44, -36}, {-44, -36}, 
{-44, 36}}),
     Text(origin = {-10, 31}, extent = {{20, -50}, {-2, 3}}, textString = 
“LTI System”, fontSize = 50)}, coordinateSystem(initialScale = 0.1)));

Generates a graphical output of a rectangle representing the system 
with the text LTI System as the figure below.

Figure 47: Graphical representation of the LTI System using annotation.

Modelica object-oriented approach
In common object-oriented softwares, such as Java, Phyton, C++ and 
many others, object-oriented programming supports operations on stored 
data, which can be variables or objects. On the other side, Modelica 
emphasizes structured mathematical modeling. In this sense, a class is a 
collection of mathematical descriptions of the model, simplifying further 
analysis. This is called declarative programming.
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In essence, the way that object-oriented programming is seen in 
Modelica can be summarized as (Fritszon, 2003):

• The concepts of the model are structured using object-
orientation, which emphasizes the declarative structure of the 
mathematical equations. The three main concepts that gives 
foundation to this structure is the development of hierarchies, 
component-connections and inheritance.

• The dynamical properties of the model are expressed in a 
declarative way using equations

• The object then consists into an instance containing a set of 
shared data.

The structure provided by Modelica to develop declarative statements 
avoid the necessity of the user to be rewriting the way information or 
data flows in the model and how to simulate it. Al these steps are taken 
care by the Modelica compiler. 

Acausal Physical Modeling
Acausal physical modeling is a very unique and special feature of 
Modelica. To better explain it, consider a linear equation of two variables, 
x and y, as stated below:

2* 3= +y x

One can easily deduce that, from the way that the equation is written, 
values for y can be obtained by inputting values of x in the equation. 
However, how this equation can be used if the problem is to obtain values 
of x once values of y are available? Normally two procedures can be taken 
in most of the programming languages. The first one, which may not be 
used for some non-linear systems, is to rearrange the equation, isolating 
the x on one side and shifting everything to the other, as follows:

3
2
−

=
y

x

A second option, called implicit approach, is to insert a dummy 
variable (F) and shift all the terms of the equation to one side, letting the 
dummy variable isolated as follows:

   2* 3=− + +F y x
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And F must be zero. To solve this, there are different iterative 
algorithms that one can provide an initial guess, and the algorithm 
converges to find the root of the equation, i.e the values for x and y which 
satisfies the constraint F = 0.

However, in Modelica an equation is declared in acausal model, 
which means that it does not matter which variables are input or output 
on it, the declaration is the same. That means for the example mentioned 
above, the equation with the y on the left side can be used to find values 
of x given some values of y. The casuality of the equation is unspecified 
before solving the system. It just becomes causal once it is set the system 
of equation to be solved. 

According Fritszon (2003), the main advantage if this type of 
modelling is that the solution direction is dependent on the direction of 
the flow of data, defined by the inputs and outputs of the system. The data 
flow context is defined by stating which variables are input and which 
ones are output.

In this sense, a system can be solved in any direction. For example, 
suppose a physical system of tank being filled and discharging at the 
same time. The normal procedure is to find the tank discharge once the 
inlet is defined as well as the geometries of the tank. In Modelica, the 
problem can be totally inversed without rewriting the model, i.e to find 
the inlet of the system once the outlet is defined.

Components, Connections and Connectors
There are three main characteristics that forms a Modelica complete 
model:

• Components
• Connection mechanism
• Component framework
Components are connected through connection mechanism. These 

network of connected components with each other forms the connection 
diagrams. The component framework works as a driver, ensuring that 
communication works and constraints are satisfied along the connection 
network.



Object-Oriented Development and Programming 205

The component is a single Modelica class, with well-defined interfaces, 
also called ports or connectors, used to communicate, send and receive 
data from the outside world. The component should be defined outside 
the world, so specific features of the simulation world are separated from 
the definitions of the system itself, for reusability. A component can also 
be composed by other components in a hierarchical structure.

Connections diagrams in Modelica are used to represent graphically 
the interaction between components in a system. These connections 
represent real physical dimensions, for instance electrical wires, pipes 
with fluids, heat exchange between the components, etc. The components 
are represented by, for instance, rectangles and connectors are represented 
by small square dots on the extremes of it, denoting input/output ports.
The connectors are instances of the connector class of Modelica. This 
class defines the variables that are transferred from linked components. 
A simple example is given below:
connector Pipe
Pressure P;
flow Discharge Q;
end Pipe;

The Pipe connector contains two variables, Pressure and Discharge, 
which is specially designated as a flow variable. The flow keyword 
defines the type of coupling: which can be:

• For non-flow variables, equality coupling, according to 
Kirchhoff’s first law;

• For flow variables, sum-to-zero coupling, according to 
Kirchhoff’s current law;

For the example above, it means that connecting two components 
will define that the Pressure is the same between the two ports, and the 
discharge that leaves one components enters to the other component 
(negative and positive discharge summing to zero).





AN OBJECT-ORIENTED APPROACH FOR 
FUNCTION DIFFERENTIATION IN PYTHON
The following application is a modification of the example “Class 
Hierarchy for Numerical Differentiation” developed by Langtangen 
(2016).

The purpose of this chapter is to develop a simple program able 
to differentiate any function using numerical techniques, and when 
available, compare the numerical output with the analytical one. The 
desired program interface enables the user to type as arguments of the 
main program:

• The expression to be evaluated;
• The method of differentiating that should be used
• A value for the independent variable(s)
• Optionally, the analytical difference value for comparison 

purpose
In summary, the user will provide in a command-line the following 

directives for instance:

GENERAL  
APPLICATIONS IN  
SCIENTIFIC PROBLEMS

4
SECTION
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numdiff.py ‘x**2’ Forward1 3 6
The program than provides the numerical approximation of the 

difference. In the case above, it is known that the analytical difference is 
given by:

( )2

2 3 2*3 6= → = → =
d x

x x
dx

There are different ways of numerically obtaining this derivative. 
The following are some of these methods:
1st – order forward difference

( ) ( ) ( )+ −
= +

y x h y xdy
h

dx h
σ

2nd – order forward difference
( ) ( ) ( )− −

= +
y x y x hdy

h
dx h

σ

2nd order central difference
( ) ( ) ( )2

2
+ − −

= +
y x h y x hdy

h
dx h

σ

4th order central difference

( ) ( ) ( ) ( ) ( )42 24 1
3 2 3 4

+ − − + − −
= − +

y x h y x h y x h y x hdy
h

dx h h
σ

Where ( )nhσ  holds the error of truncation. Because all of the methods 
possess properties in common, it is natural to develop a superclass which 
represents a generic differentiation method. Subclasses derived from it 
will perform the differentiation according the desired algorithm. The 
following code represents the generic parent class:
class Diff:
    def __init__(self, f, h=1E-5, dfdx_exact = None):
        self.f = f
        self.h = float(h)
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        self.exact = dfdx_exact
    def trunerror(self, x):
        if self.exact is not None:
            return self.exact(x) - self(x)

The superclass Diff has three class members, the function to be 
differentiated (f), the finite step size (h), and a value of the analytical 
difference that may be provided by the user, so one may be able to 
compare the accuracy of the chosen method or of the chosen step size.

From this generic superclass, subclasses can be derived, according 
each of the methods implemented in the program. The following is the 
code for the implemented differentiation methods, each one defined as a 
class.
class Forward1(Diff):
    def __call__(self, x):
        f, h = self.f, self.h
        return (f(x+h) - f(x))/h

class Backward1(Diff):
    def __call__(self, x):
        f, h = self.f, self.h
        return (f(x) - f(x-h))/h

class Central2(Diff):
    def __call__(self, x):
        f, h = self.f, self.h
        return (f(x+h) - f(x-h))/(2*h)

class Central4(Diff):
    def __call__(self, x):
        f, h = self.f, self.h
        return (4./3)*(f(x+h) - f(x-h)) /(2*h) - \
        (1./3)*(f(x+2*h) - f(x-2*h))/(4*h)

The code above is saved in file Diff.py. In order, not to mix the 
differentiation classes which can be used in different programs with 
the simple command line program here presented, the statements of the 



Object-oriented Modelling for Scientific Computing210

program are defined in a different file. Python can import these classes in 
the command line program using the statement:
from Diff import *

However, Python can only import the file if it finds it on the Python 
Path. To include the folder that the file Diff.py was created in Python 
Path, use the following directive:
import sys
sys.path.append(“directory/where/file/is/saved”)
In this way, Python adds to its path the directory and it is able to find the 
module that should be imported. 
The complete code for the command line program to calculate the 
numerical difference is as follows:
import sys
from Diff import *
from math import *
from Equation import Expression
formula = sys.argv[1]
f = Expression(formula,[“x”])
difftype = sys.argv[2]
difforder = sys.argv[3]
classname = difftype + difforder
df = eval(classname + ‘(f)’)
x = float(sys.argv[4])
print(df(x))

When the user runs this program, it prints the value of the numerical 
difference according the desired numerical method that the user required. 
The following screenshot shows the testing of this program.
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Figure 1: Testing the numdiff program

DEVELOPMENT OF A SIMPLE OBJECT 
ORIENTED SIMULATOR OF DYNAMICAL 

SYTEMS
In this chapter, it explained and implemented step by step a simple 
object-oriented simulator. A simulation software is a program capable 
of modelling some phenomenon described by one or more mathematical 
functions. In essence, the simulator allows the user to observe a process 
without performing it.

There are simulation software’s in different areas, such as analysis 
of power systems, behavior, weather conditions, electronic circuits, 
chemical reactions and processes, biological and environmental 
processes, feedback control systems, among a variety of other areas.

Besides simulating well-based mathematical functions, simulation is 
also used to test new theories, and these results can be validated with 
observed data of the event under analysis.

Simulations falls into two main branches: continuous simulation and 
discrete simulation. Discrete simulations are used to describe events that 
can be represented statistical events such as the arrival of clients in a 
bank queue. Continuous simulations are used in a variety of physical 
processes since these phenomena are non-discrete.

To start with a simple example, with develop a simulator algorithm 
capable of modelling the following discrete equation:

1−=t tx ax
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From the model equation, one can see that the variable x  is a 
function of time, and it is discrete since values from it are inferred at a 
fixed sample rate of 1 (one). The variable  a  is a constant, and is referred 
to as a parameter of the model. The parameter 1− =

t

t

x
a

x
 can also be seen as a 

ratio between the subsequent values of 1− =
t

t

x
a

x
:

1− =
t

t

x
a

x

Before making any calculations, one can infer some possibilities 
regarding the dynamics of the model, according the value of a :

If 0<a , the value of −∞ decreases indefinitely towards −∞

If 1a = − , the value of x  oscillates between +x  and −x

If 1 0− < <a , the value of x  converges to 0 (zero)

If 0=a , the value of next x  after the beginning of the simulation 
will be always 0 (zero).

If 0 1a< < , the value of x  decreases and converges to 0 (zero)

If 1=a , the value of 1>a  is always constant, does not increase or 
decrease

If 1>a , the value of +∞ is increases indefinitely towards +∞  
So even a simple equation such as the one mentioned above can have 

a variety of behavior. So much more are complex systems which depends 
on a series of parameters, conditions and different equations depending 
on a series of factors. 

Before simulating the model, it is important to know that a simulation 
has three important events, or methods:

• Initialization: The initial values for all states of the system 
need to be configures at this phase.

• Observe: There are different ways of monitoring the states of 
a system. One way is by collecting it in a matrix, by printing 
them in the screen or performing any visualization of the 
system.

• Update: In this moment, the states of the system are updated as 
new time step is given. This part is defined as a function and it 
runs repeatedly.
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Before starting to perform any calculation and any implementation of 
a specific code, we can develop a template of the main simulator class, 
which will perform each of the three steps of the simulation process
class Simulator:
    def __init__(self, f, x, t):
        self.f = f
        self.x = [x]
        self.t = [t]
    def observe(self, x, t):
        self.x.append ( x )
        self.t.append ( t )

    def update(self, N):
        N = 1
        # code goes here

The Simulator class is a generic simulator which we will extend to be 
able to simulate the discrete system described above. To do so, we rewrite 
the update function, which will at each time step, calculate the new state 
value and observe it, until it reaches the number of steps required by the 
user. The definition of this class is shown below:
class DiscreteSimulator(Simulator):
    def update(self, N):
        x = self.x[-1]
        t = self.t[-1]
        for i in range(N):
            x = self.f(x,t)
            t = t + 1
            self.observe(x,t)

The update of the states of the system is done by calculating the 
provided function that defines the dynamics of the function under study. 
In the present case, we can define this function as growth function as 
follows:
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def growth(x,t):
    return 0.2*x

Here we use the parameter a  equal to 0.2, which means that the value 
of x will converge to zero given enough simulation time. The initial value 
of the state x, naturally, must be different from 0, otherwise nothing will 
happen. The simulation can be performed and graphical visualization can 
be generated with a few lines of code, as follows:
import matplotlib.pyplot as plt
x0 = 10.0
t0 = 0.0
discrsim = DiscreteSimulator(growth,x0,t0)
discrsim.update(30)
plt.plot(discrsim.t,discrsim.x)
plt.show()
plt.savefig(‘example.png’)

Here we define the initial state with a value of 10 and the initial 
simulation time equal 0 (zero). In the following line, an instance of the 
Discrete Simulator class is created with the function and the initial states. 
The function update is used to evaluate the function in the given time 
steps (30 time steps). Graphical visualization is easily generated with the 
matplolib library, and the result is shown in the figure below. 

Figure 2: Result for the simulation of na discrete model.
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To allow code extensibility, it is useful in Python to subdivide the 
code in Modules, at each according its functionality. In the present case, 
we may divide the code in the following components:

• One file with the definitions of the Simulator class and its 
subclasses

• One file with the definition of the model which is being tested
• One file with the specific simulation conditions (initial states, 

number of steps)
• One file to generate instances of the classes involved in the 

problem and to perform the simulation itself.
This type of code division allows modularity, and allows the user as 

well as the developer to focus on different parts of the problem when 
looking different files, as well as not to do modifications on files in the 
final version.

Now it is desired to extend the simulator, to be able to deal with 
models with multiple variables. To do so, we assume the following 
discrete model:

1 10.5 − −= +t t tx x y

1 10.5 − −= − +t t ty x y

0 01, 1= =x y

To be able to implement additional states, we make use of numpy 
library to use arrays to store the states. The observation will now be 
stored in a new class which allows the Simulator class to be responsible 
only for carrying out the simulation, and at each simulation time calling 
the observer which will perform the recording of the simulation data. The 
classes are stored in a file by the name Simulator.py
import numpy as np
class Simulator:
    def __init__(self,f,x,t):
        self.f = f
        self.x = x
        self.t = t
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    def update(self,N):
        N = 1
        # code goes here

class Observer:
    def __init__(self,x,t,N):
        self.x = np.zeros((len(x),N+1))
        self.t = np.zeros(N+1)

    def __call__(self,x,t,i):
        self.x[:,i] = x
        self.t[i] = t

class DiscreteSimulator(Simulator):
    def update(self,N):
        self.simobs = Observer(self.x,self.t,N)
        x = self.x
        t = self.t
        self.simobs(x,t,0)
        for i in range(1,N+1):
            x = self.f(x,t)
            t = t + 1
            self.simobs(x,t,i)

By using numpy arrays, the Observer class is able to store any number 
of states. The model definition is written in a file ModelConfig.py, as 
follows.
def model(x,t):
    x1 = 0.5*x[0] + x[1]
    x2  = -0.5*x[0] + x[1]
    return x1,x2
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The initial conditions and the number of steps in the simulation are 
now defined also in a separate file, named InitConfig.py- The data in this 
file is as follows:
t = 0.0
x = [1.0,1.0]
N = 30

In this file, it can be seen that it was chosen not to use two different 
variables to solve the problem as the set of equations suggested, but 
instead we want to keep the same number of arguments in the model 
definition, so the program will be able to run for one or for multiple states 
problem.

The last file, used to create the instance of the classes to simulate and 
to perform the simulation itself is written in the file workflow.py. The 
code for this file is shown below.
import matplotlib.pyplot as plt
from InitConfig import *
from ModelConfig import *
from Simulator import *
discrsim = DiscreteSimulator(model,x,t)
discrsim.update(N)
t = discrsim.simobs.t
x = discrsim.simobs.x[0,:]
y = discrsim.simobs.x[1,:]
plt.plot(t,x,t,y)
plt.savefig(‘example.png’)
plt.show()

Now it is necessary to import the other program modules in order to 
run it properly. This is done using the directive import in the top of the 
code. Visual output is generated using the Matplotlib, and shown below.
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Figure 3: Results for the dicrete model with 2 states.

The program can be evaluated for different parameters of this model, 
and the user will see that only certain kinds of behaviors are possible 
in this system. The model may show exponential decay or growth or 
oscillatory behavior. The linearity of this type of model can be checked 
by performing a plot of one state against the other, what is called x-y 
phase space.

From the plot above, it can be seen that the system is in an oval, 
period system. This type of dynamics is typical of linear systems.
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Application of the object-oriented simulator to  
Predator-Prey model
The predator-prey model is a famous mathematical description of 
ecological interaction between two species, also known as Lotka – 
Volterra equations. Basically, the model assumes that the dynamics of the 
predator-prey relationship can be modelled by the following assumptions:

• Prey grows if there are no predators
• Predators decay if there are no preys
The scenario implemented by the model can be summarized as 

follows: Suppose a closed ecological system, where no migration occurs 
out or into the system. This ecosystem is composed by only 2 typed of 
animals: the predator and the prey. In this simple configuration, the food 
chain can be represented as below:

 

Figure 4: Ecological dynamics of the predator prey model.

The prey has an infinite amount of available food to eat. The 
interactions between predator and prey can be defined according the 
following events:

• The prey’s death rate increases as the predator population 
increases.

• The predators’ growth rate increases as the prey population 
increases

With this assumption, the size of the predator and the prey populations 
can be described by a system of 2 nonlinear differential equations.

−′ =x Ax Bxy

+′ = −y Cy Dxy
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Where 'x  is the rate of change in the prey population size, x  is the 
prey population size.. y  is the predator rate of change in the population 
size, and y  is the predator population size.. The parameters A, B, C and 
D describes the interactions between the two species.

A short history on the Lotka-Volterra model
In 1910, Alfred J. Lotka proposed the predator-prey model as a theory 
for autocatalytic chemical reactions. In 1920, the model was extended by 
Andrey Kolmogorov to represent the interactions among an herbivorous 
animal and a plant specie. The set of equations was published in 1926 by 
Vito Volterra, inspired by the marine biologist Umberto D’Ancona who 
became his son-in-law. 

The model was later extended in order to include prey-growth, and it 
has been commonly applied to evaluate the dynamics of some species on 
different parts of the globe. 

Implementation of the model in the object-oriented Simulator
To be able to implement the model, it first needs to be transformed from 
continuous to discrete mode. The discretization can be done using Forward 
Euler time integration, in which case the set of equations become:

1+ = + −t t t t tx x Ax Bx y

1+ = − +t t t t ty y Cy Dx y

Assuming A = 0.01, B = 0.001, C = 0.01 D = 0.005. Before performing 
any calculations, as the project grows, it requires better organization so 
every data and code can be easily found. By structuring the program 
using tree directory, different models and tests can be performed, without 
messing with the main code and avoid repeating the same lines. The 
following organization may be followed:
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Figure 5: Directory tree for the simulator Project – Version 0.1

The program is now subdivided into three main folders:
• Models: This folder holds the modules with definitions on each 

model. One model can be composed of a single function, a set 
of functions, one single class or a set of classes and functions. 
It is desirable to keep the level of complexity open, so the 
simulator is a flexible program.

• Src: The abbreviation stands for Source Code, and is the 
place where the main code to run the simulator stays. For the 
moment, the folder holds a single module, Simulator.py, with 
the definition of the Simulators classes as developed before.

• Tests: Any result that one may desire to store can be placed 
under the tests folder, in a subfolder with an appropriate name 
holding all the files that the user may have generated as output, 
such as graphs, spreadsheets and so on.

To do the first implementation of the Predator-Prey model, navigate 
to the  folder and create a module “PredatorPreyv1.py”. The “v1” at the 
end of the file name indicates that this is the first version, or the first 
attempt to solve this problem. The code inside this file is written below:
def model(x,t):
    A = 0.5
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    B = 0.2
    C = 0.5
    D = 1
    x1 = x[0] + A * x[0] - B * x[0] * x[1]
    x2 = x[1] - C * x[1] + D * x[0] * x[1]
    return x1,x2

Changes must also be made to the file “workflow.py”, to properly 
import all the modules and run the simulation. The import statements are 
rewritten according the following code:
from src.Simulators import *
from models.PredatorPreyv1 import *
from tests.preypredatorv1.InitConfig import *

A first attempt to run the simulation can be done, by assuming the 
initial population of gazelles (preys) to 100, the lion population also to 
10, and 30 time steps. By doing so, the following output is obtained.

Figure 6: Simulation of predator-prey model – First attemp.

From the figure above, one can see that, as expected, because the 
population of gazelle is relatively high in comparison to the lion, there 
is an initial decrease in the gazelle’s population, with a parallel increase 
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in the lion’s population. This means that the predator is consuming the 
prey, and consequently reproducing, while the prey’s reproduction is not 
enough to keep its population constant, so it decreases.

One may also extrapolate ideas from the simulation, inferring that, 
because the lion’s population is steadily growing, the gazelle’s population 
will at some point in time reach zero, and so the lion population will 
also die because of the lack of prey. However, mental extrapolations of 
dynamical systems are very dangerous and can arise wrong conclusions. 
To do a proper inference regarding the population’s size, we need to run 
the model of a larger period of time.

The following figure shows the results for this simulation using N 
(time steps) = 3000.

Figure 7: Simulation of predator-prey model. Second attemp

The mental extrapolation that the gazelle population would be 
exterminate showed itself wrong according the results obtained for a 
larger simulation time, as shown above. And also a quasi-steady-state 
can be seen from the behavior of the two species, with an increase of the 
gazelle population, followed by an increase of the lions population with 
consequent death of gazelles, and the reduced availability of gazelles 
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also diminishes the lion population, what makes the gazelle population 
grow again. This pattern is repeated over and over again.

Again, we can perform an analysis on the x-y state phase diagram to 
retrieve information regarding the (non) linear dynamics of the system. 
The following figure illustrates this diagram:

Figure 8: x-y state phase diagram for predator prey model.

From the figure above, it can be seen that the oscillations are not 
constant, but are monotonically changing in amplitude, either for 
increasing or for decreasing. In this case, if we simulate the model for 
enough time, one can see that the oscillations are continuously increasing.

Incorporating object-oriented programming in the  
model – Predator Prey example
Until this step of development, the simulator previously written is 
object-oriented. However, the model is implemented using functional 
programming. The concepts of the prey and the predator using this 
feature as very abstract. So, the next step is to incorporate object-oriented 
concepts in the model itself, in such a way that it can easily be extended. 
In the present case, it is desirable to have a predator-prey model which 
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can incorporates different species and expand from a dual interaction to 
multiple interactions in a complex ecosystem.
If we think in the prey as an object, and predator as another object, then 
these concepts can be incorporated into one (or more) classes and the 
interaction between them, defined inside the methods of the class.

As an initial approach, in order to not raise the complexity of the 
system too much, one may think that both the predator and the prey 
are Animals, so in this sense, both belongs to the same class. The class 
Animal that is here developed refers not only to a single animal but to 
the population of animals which share the same characteristics, i.e all the 
prey animals with the same parameters dynamics will make one instance 
of the class Animal. In a single model, one may have different prey that 
interacts with the predator in different forms. In this case there will be 
different instances of Animals representing preys.

In the previous formulation it was shown that the model representing 
the dual interaction between species has four parameters (A, B, C, D). 
However, B and D are parameters multiplied by  two interacting species. 
On the other hand, the parameters A and C are multiplied only by the 
species population that the equation represents.

Two represent this dynamic, we develop one class with three class 
members:

• Population: refers to the number of animals in the group
• birthrate: a number that represents the ratio of increase of the 

animal population due to the actual number of individuals.
• Interactionrate: a number that represents the ratio of change in 

a population to the interaction between the actual specie with 
another (dual interaction).

Each term of the prey-predator equation prey represents an important 
dynamic process in the ecosystem. In the class Animal, these processes 
are represented by two methods:

• Reproduce: This method calculates the balance between the 
amount of individuals that were born minus those who died of 
natural death, minus the immigration.

• Interact: This method calculates the change in population due 
to the interact with other populations. In this case, the change 
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in the population hunted diminishes while the change in the 
hunter population increases.

The code developed for this class is saved in the module 
“PreyPredatorv2”, so we develop a refined version (version 2) of the 
Prey-Predator model, using object-oriented features. The following is the 
code for the Animal class:
class Animal:
    def __init__(self,population,A,B):
        self.population = population
        self.birthrate = A
        self.interactionrate = B
        
    def reproduce(self):
        A = self.birthrate
        return A*self.population

    def interact(self,other):
        B = self.interactionrate
        return B*self.population*other.population

A few changes have also to be made on other parts of the code. The 
rest of “PredatorPreyv2.py” module is written as follows:
A = 0.01
B = -0.001
C = -0.01
D = 0.0002
gazelle = Animal(100.0,A,B)
lion = Animal(10.0,C,D)

def discrmodel(t):
# x[0] - gazelle population
# x[1] - lion population
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    x1 = gazelle.population + gazelle.reproduce() + gazelle.interact(lion)
    x2 = lion.population + lion.reproduce()  + lion.interact(gazelle)
    
    if x1<0:
        x1=0
    if x2<0:
        x2=0
    
    return x1,x2

def set_states(x):
# x[0] - gazelle population
# x[1] - lion population

    gazelle.population = x[0]
    lion.population = x[1]

def get_states():
# x[0] - gazelle population
# x[1] - lion population

    x1 = gazelle.population
    x2 = lion.population
    return x1,x2

The same parameters used to test the version 1 of the predator-prey 
model are again used, to check the correctness of the model. The main 
model function was renamed to discrmodel, so it explicitly express that 
this is a discrmodel. This was done because the next step is to develop a 
continuous model.

Two new functions are incorporated into the program, the get_states 
( ) and the set_states (  ). These methods are used during the simulation 
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process to update the value of the states in each object instance, and to 
retrieve when necessary the actual value of the states inside the objects.

Shifting the focus to the main source code, minor changes had to 
be made to the “Simulators.py” module. The simulator must be able to 
access the get_states ( ) and set_states ( ) methods. So, these methods 
are new class members of the Simulator class. Additionally, because the 
discrmodel now takes only one argument (the simulation time), this is 
also reflected in the new code. And the set_states ( ) method is called at 
each iteration of the simulation to update the states in the objects. The 
modified constructor method for the Simulator parent class then reads:
class Simulator:
    def __init__(self,f,x,t,statesetter,stategetter):
        self.f = f
        self.x = x
        self.t = t
        self.statesetter = statesetter
        self.stategetter = stategetter

And the modified update ( ) function of the DiscreteSimulator class is 
now according the following code:
    def update(self,N):
        self.simobs = Observer(self.x,self.t,N)
        x = self.x
        t = self.t
        self.simobs(x,t,0)
        for i in range(1,N+1):
            x = self.f(t)
            t = t + 1
            self.statesetter(x)
            self.simobs(x,t,i)

Taking these modifications into account and running the simulation 
should produce the exactly same result as the example using version 1 of 
the predator prey model. 
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In order to show the elegancy of the object-oriented approach and the 
clear representation of each element in the model using this technique, 
we extend the system under test by adding an additional population and 
comparing how the whole ecosystem reacts to the insertion of this third 
element. Let’s say the baboons are now present, with an initial population 
of 100. The baboons are assumed to be able of reproducing with a ratio 
two times bigger than the gazelles, however they are also two times more 
hunted by the lions. For simplicity, the ratio of interaction from the lions 
to the gazelles and from the lions to the baboons to the be the same.

The rewritten code to represent this new ecosystem is shown below:
A = 0.01
B = -0.001

C = -0.01
D = 0.0002

E = 0.02
F = -0.002
gazelle = Animal(100.0,A,B)

lion = Animal(10.0,C,D)

baboon = Animal(100.0,E,F)

def discrmodel(t):
# x[0] - gazelle population
# x[1] - lion population
# x[2] - baboon population

    x1 = gazelle.population + gazelle.reproduce() + gazelle.interact(lion)
    x2 = lion.population + lion.reproduce()  + lion.interact(gazelle) + lion.
interact(baboon)
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    x3 = baboon.population + baboon.reproduce()  + baboon.interact(lion)
    
    if x1<0:
        x1=0
    if x2<0:
        x2=0
    if x3<0:
        x3=0
    
    return x1,x2,x3

The functions get_states ( ) and set_states must also incorporate 
the new state, namely the baboon population, but as this step is straight 
forward there is no need to show it here. The result for simulating 3000 
time steps is shown in the figure below.

Figure 9: Results for the prey-predator model with three populations.

The reader may try to see how this system behaves with different 
parameters of birth rate, interaction between population, and different 
populations. The object-oriented approach in this case helps to see in a 
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non-mathematical form the elements that forms the equation. Without 
using this resource, the populations are only represented by a value of a 
variable, “x” for instance, and the meaning of what x stands for is a bit 
more hidden.

Translating Predator Prey discrete model to continuous model
The next natural step in the development of the Predator – Prey model is 
to use a continuous model, since the original model is described in terms 
of the derivatives of the population according:

= −dx Ax Bxy

= − +dy Cy Dxy

In the way that is written above, the model can not be solved 
numerically. In order to simulate, it is necessary to discretize it in space. 
One can apply the Forward Euler time integration as already mentioned 
above:

The main difference from this discrete model to the one developed 
before, is that the one can keep track of the time step given, increasing 
or decreasing it in order to have a stable continuous model. The above 
discretization is just one of the methods that can be used. Another very 
common method is the Backward Euler, or the 4th order Runge Kutta and 
other algorithms similar to these.

There are no big changes in the main code, expect that implementation 
of the time integration algorithms to solve the model. The following code 
reflects the definition of the function used to calculate the Forward Euler 
integration and the Runge Kutta in a simple form:
def ForwardEuler(f,t,dt,x):
    dx = f(t,x)

    x = x + dt * dx
    return x
def RungeKutta4(f,t,dt,x):
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    k1 = f(t,x)
    k2 = f(t+dt/2,x+dt/2*k1)
    k3 = f(t+dt/2,x+dt/2*k2)
    k4 = f(t+dt,x+dt*k3)

    x = x + dt/6*(k1+2*k2+2*k3+k4)
    return x

The class ContinuousSimulator replaces the DiscreteSimulator class 
to perform the necessary calculations in this case. An additional class 
member, solver, stores which time integration algorithm is to be used. 
Regardless of that, minor changes in the update method are implemented, 
and the code then becomes:
def update(self,N,dt):
        self.simobs = Observer(self.x,self.t,N)
        x = self.x
        t = self.t
        self.simobs(x,t,0)
        for i in range(1,N+1):
            x = self.solver(self.f,t,dt,x)
            t = t + dt
            self.statesetter(x)
            self.simobs(x,t,i)

USING THE OPENMDAO FOR MODEL  
DEVELOPMENT AND SIMULATION

OpenMDAO is a high-performance computing platform for systems 
analysis and optimization that enables you to decompose your models, 
making them easier to build and maintain, while still solving them in 
a tightly-coupled manner with efficient parallel numerical methods 
(OPENMDAO, __).

Along with the software, a library of sparse solvers and optimizers 
are provided which are able to work with the MPI based, distributed 
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memory data passing scheme. Nevertheless, the user can also choose not 
to obtain MPI, in which case OpenMDAO runs efficiently in serial using 
numpy data passing implementation.

The software claims unique capability regarding automatic analytic 
multidisciplinary derivatives. As long as the user provides the analytical 
derivatives of the components, OpenMDAO is capable of solving the 
chain rule across the model, computing system level derivatives for 
Newton solvers and/or gradient based optimizers. With this feature, the 
solution of large non-linear problems is possible, even for models with 
over 25 thousand variables using adjoin derivatives.

If analytical derivatives of the components are not available, 
OpenMDAO is callable of translating them numerically to finite 
difference components and computes semi-analytic multidisciplinary 
derivatives. The ability of the software to make use of semi-analytic 
derivatives increases computational efficiency greatly. For instance, the 
computation of an aero-structural wind turbine optimization could be 
reduced 5x when compared with traditional approaches.

Installation of the software
One can install OpenMDAO easily using a single line in the command 
prompt:
>>  pip install openmdao

A second option is to obtain the most recent version of OpenMDAO 
from the Github repository using the following line in a command prompt:
>> pip install git+http://github.com/OpenMDAO/OpenMDAO.git@
master

OpenMDAO is available for Windows, MacOS or Linux systems. 
The supported platforms of MacOS are:

• Mavericks (10.9.5)
• Yosemite (10.10.5)
• El Capitan (10.11.x)
For Windows the following platforms are supported:
• Windows 7
• Windows 8
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• Windows 10 (not officialy)
The platforms for Linux are:
• Trusty Tahr
• Vivid Verdet
• Xenial Xerus
The prerequisites for OpenMDAO are Python, including the basic 

packages for scientific computing Numpy and Scipy. The supported 
versions of Python are 2.7.9 and 3.4.3, although it may also work in more 
recent versions. The Numpy library should be version 1.9.2 or above. 
Scipy package supported is 0.15.1 or above.

Basic Object-Oriented modeling with OpenMDAO
This section describes the basic concepts and tools used in OpenMDAO 
to define correctly a problem and to solve it.

A System is the basic concept in OpenMDAO. Systemas are related 
to Components and Groups. Component is the computational class in 
OpenMDAO, where the user develops the model and wrap external 
analysis code. Group are collections of Components and other sub 
Groups with data passing and execution sequence. Problem contain the 
whole model.

System
In 2015, Hwang developed a mathematical architecture called Modular 
Analysis and Unified Derivatives, representing an unique abstraction 
to model large system represented by many smaller components. This 
architecture is the basis of OpenMDAO.

The fundamental concept of the Modular Analysis and Unified 
Derivatives (MAUD) is that an entire system can be represented as a 
hierarchical set of systems of (non) linear equations. This architecture is 
composed by a fundamental building block referred to in OpenMDAO as 
System block. This class represents a system of equations that needs to 
be solved together in such a way that a single solution satisfies them all.

A system of equations is composed of input values (parameters) and 
output values (unknows). Suppose as an example the linear equation 
below:
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2 3= +y x

A system defined by the equation above has 1 parameter, or input 
value (x) and one output value (y). The above equation is said to be 
explicit, since the required output variable is isolated from the rest of the 
equation and can be directly obtained by calculating the right hand side 
of the equation.

Another way to represent the same equation is to make it implicit. 
Using this approach, a residual (which should be zero) is equal to the 
equation shifted to one side of it. The system composed by one linear 
equation stated above could be rewritten in the implicit form as:

( ) 2 3 0= − − =R y y x

In this configuration, the system acquires a new attribute, called 
resids, which stores the list of residuals for efficient processing.

The equations are defined in one method of the System class called 
solve_nonlinear( ). This method can directly calculate the value of 
unknows for explicit equations, or find the correct value for the states 
that converges the residuals to zero.

Another method of this class, apply_nonlinear( ) computes the 
residuals values of a state. This function is not used if the system is 
defined only by explicit equations.

The Component class and the Group class are subclasses of the 
System.

Component
According the definitions of the OpenMDAO, Component is the child 
class of Subsystem that composes the lowest level system. The classes 
that are derived from it are the only ones allowed to create parameter, 
output, and state variables. The development of new models is done by 
subclassing the Component class and defining a solve_nonlinear and/
or apply_nonlinear methods which defines the specific dynamics of 
processes under study.

The necessary variables are added to the class in the constructor 
(__init__) using the methods add_parameter, add_output and add_state 
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functions. In the following code, a simple component is created and 
parameters, outputs and states are added to it.
class MyComponent(Component):
    def __init__(self):
        super(MyComp, self).__init__()
        self.add_param(‘a’, val=0.)
        self.add_output(‘b’, shape=2)
        self.add_state(‘c’, val=[-1., 1.1])

It is necessary to specify initial values for the variables of the 
component, so the program can efficiently allocate the needed space in 
the vectors for data passing. The default shape for a single value if float, 
while the default shape for a vector is numpy float array.

The method solve_nonlinear( ) takes as arguments the parameters, the 
unknown vectors and a residuals vector. These are stored as dictionaries 
in the Component class, so the reference to them is done as one would 
do with any dictionary in Python. The following code exemplifies this 
method:
def solve_nonlinear(self, params, unknowns, resids):
    unknowns[‘y’] = 2 * params[‘x’] + 3

If the solve_nonlinear method defines any implicit equation, then the 
apply_nonlienar method must be implemented. The function calculates 
the residuals for the given parameters and states. In OpenMDAO, two 
options can be used to define how to converge implicit equations:

• OpenMDAO solver
• Make the component converge itself.
The definition of analytical derivatives can be done in a component 

by overriding the linearize method. This method linearizes the non-linear 
equations and delivers the partial derivatives to the framework.
def linearize(self, params, unknowns, resids):
    J = {}
    J[‘y’,’x’] = 2
    J[‘y’,’y’] = 1
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Group
The Group class is used to collect smaller objects in order to organize 
complex system into sub-units. Groups can be formed by a collection 
of components or a collection of smaller groups. In essence,, Group is a 
System object instance composed of the equations from its children that 
are linked via data connections.

The fact that a Group can hold other groups in OpenMDAO creates 
a powerful object-oriented interface. This configuration allows complex 
systems to be seen in a simple way, where in the higher level the main 
concepts are seen, and the inner levels intrinsic dynamics and details of 
the system are presented without making the whole system too much 
confusing.

The creation of Groups in the framework is done by adding one or 
more Systems or Groups, or even a mixture of them.
comp1 = MyComp()
comp2 = MyComp()
comp3 = MyComp()
comp4 = MyComp()
group1 = Group()
group1.add(‘comp1’, comp1)
group1.add(‘comp2’, comp2)
group1.add(‘comp3’, comp3)
group2 = Group()
group 2.add(‘comp4’, c3)
group 2.add(‘sub_group_1’, group1)

The dependencies among systems in a group are represented by the 
connections between the variables in the Group’s subsystems. These 
connections can be estabilished in two ways: explicitly or implicitly.

The explicit connection estabilished the flow of information from one 
ouput (or state) of the System to an input (parameter) of another system 
using the Group connect method. For instance:
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Group1.sub_group_1.connect(‘comp1.y’, ‘comp2.x’)
The implicit connection is established using the promotion mechanism 

in a Group. Whenever, a System is added to a Group, variables can be 
specified to be promoted from the subsystem to the group level. In this 
way, a variable can be referred as it was from the Group instead of the 
Subsystem which it belonged originally.

Group1.add(“comp1”, component1, promotes=[‘y’])
If multiple variables subsystem are promoted with the same name, 

then those variables will be implicitly connected.
A Group is an element of the architecture of OpenMDAO used to 

assemble multiple system of equations and solving them together. In 
this sense, they differ from the Component class which is used to define 
variables and equations that defines the transformations inside the system. 
The Group class uses a Solver to solve the collection of Components is 
it was a single problem. Two solvers are implemented: a linear solver 
and a non-linear solver. The default linear solver is Scipy GMres and 
the default non-linear solver is a RunOnce solver. This last one will call 
the solve_nonlinear method on each system in the Group sequentially. 
Besides the default ones, there is a collection of other linear and non-
linear solvers that can be used in replacement of the defaults.

Problem
The problem is a single instance, top-level element used to couple all the 
Groups forming the Model itself. The Problem instance can be used to 
perform analyses, to design experiments or to do optimization-.

The Problem has a single top-level Group called root. This group can 
be attributed to the Problem instance when creating it, via the constructor, 
or passed later. The following is an example of creating a problem and 
passing the root group via the constructor.
prob = Problem(ExampleGroup())

In order to control the solution of the problem, OpenMDAO uses a 
driver class. The base Driver class is the simplest driver, which works 
by simply calling the solve_nonlinear method on the root Group. 
Nonetheless, there are a variety of other drivers available to perform 
different experiments, such as optimization, case iteration and design of 
experiment drivers. The driver is the object which determines how the 
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problem will be solved.
The simulation is called by first setting up the problem and then 

calling the method run, as follows:
prob.setup()
prob.run()

TANK SYSTEM MODELLING
In the following section, it is implemented an object-oriented approach 
for modeling a system of fluid tanks using the programming language 
Python. This is a simple but useful type of process, especially in chemical 
engineering problems, and it can be further extended with additional 
process dynamics, such as chemical reactions that occur in the tank, 
heating jackets and other features. The approach here developed can be 
also used to other unit operations in chemical and process engineering.

The system of tanks can be represented by the figure below. There is 
a continuous source of fluid to the system, with a known amount of fluid 
per time

Figure 10: Tank system representation.

Some features of the system here implemented are:
• There is no interaction between the levels of each tank. This 

means that the level in the second tank does not interfere with 
the level of the first one.
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• Each tank has a constant cross section area. The system can be 
further extended to also represent tanks with a table relating 
fluid level and cross section.

• The discharge of teach tank is proportional to the square root 
of the fluid level, according:

 = vq C h

Where q  is the discharge, h  is a coefficient of discharge and h  
is the fluid level in the tank.. This equation comes from a simplified 
representation of the Bernoulli equation shown below:

2

0 2     / 4
100
 =  
 

d
q g hc π

Where g  is the gravitational acceleration, d  is an dimensionless 
discharge coefficient, and d  is the diameter.

The objective is to obtain the states and outputs of the system, i.e, 
the fluid levels and the flows given as boundary condition the flow at the 
source at some points in time.

The system can be represented using the continuous state-space 
representation:

( ), ,= …x f t x

Where x  is the derivative vector of the states, t  is the time, x  is the 
state vector (fluid level at each tank), 

( ), ,…f t x
 is the output vector (discharge 

of each tank), and ( ), ,…f t x  and ( ), ,…g t x  are (non) linear functions 
representing the dynamics of the process.

The first step is to solve the problem is to apply the material balance 
to each tank, i.e, the amount of fluid entering minus the amount leaving 
is equal to the rate of accumulation of fluid in the tank. In mathematical 
representation:

= −i out

dh
A q q

dt
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Where iq  is the cross-section of the tank, iq  is the inflow and outq  
is the outflow, governed by the Bernoulli equation described above. 
Representing each tank dynamics in state-space representation:

/= −

i outh q q A

=out vq C h

Developing the above representation for each tank in the system, the 
state space representation is extended to the vector form:
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To solve this problem, one can apply Forward Euler time integration 
scheme to the derivatives of the state. With this approach to complete 
system is update at each time step using the following set of equations:
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First approach – Functional programming
To show the advantages of the object-oriented programing when 
solving this type of problem, it is first implemented a direct, functional 
programming approach to solve the problem of the three tank system. 
The functional programming, as the name depicts, is a code composed of 
functions defining the problem and how to solve it. The main advantage of 
this type of approach is that the rapidly development of simple problems 
allows one to solve them quickly. However, it is difficult to extended 
such codes and, once the problems becomes more and more complex, it 
can become confusing to identify the functionality of each component of 
the program.

The first step consists of writing a function describing the problem 
of the three tanks. In Python, the code for this problem can be written as 
follows:
import numpy as np
def system_of_tanks(t,x,t_table,q_table,valve,A,ce):
        h0 = x[0]
        h1 = x[1]
        h2 = x[2]
        dx = np.zeros(3)
        y = np.zeros(3)
        
        qi = np.interp(t,t_table,q_table)
        y[0] = ce[0]*valve[0]*np.sqrt(h0)
        dx[0] = (qi - y[0])/A[0]
        
        y[1] = ce[1]*valve[2]*np.sqrt(h1)
        dx[1] = (y[0] - y[1])/A[1]
        
        y[2] = ce[2]*valve[2]*np.sqrt(h2)
        dx[2] = (y[1] - y[2])/A[2]
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        return dx,y

The code is straight forward. As input to the function, it is given the 
previous states of the system, the current time, the flow source data, the 
opening of the valves in the outlet of each tank, the cross section of the 
tanks and the discharge coefficient. The function returns the derivative of 
the states (the derivative of the fluid level in each tank) and the current 
ouputt (the discharge of each tank).

This function can be used to solve a variety of problems consisting 
of different flow sources condition, different tanks geometries and 
coefficients of discharge of the tanks. Nonetheless, it is strict with regards 
to a system of three tanks connected in series without interaction from 
downstream to upstream. If one desires to test the effect of adding one 
more tank or providing interaction among the tanks, then the function 
must be rewritten. This step can lead to errors in the code and can be even 
difficult to trace.

The rest of the code consists in defining the flow source condition, 
the valves opening, tank cross sections and coefficient of discharges. 
A second function (spreadsheet) derived from the first one is written 
applying the definitions on the variables mentioned above, and the 
problem is simulated using the Forward Euler time integration scheme 
according the code below.
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
tq = [0,100]
    q_table = [10,10]
    valve = [1.0,
             1.0,
             1.0]
    A = [2,
         2,
         2]
    ce = [5,
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          4.5,
          4]

    spreadsheet = lambda t,x: system_of_tanks(t,x,tq,q_table,valve,A,ce)

    N = 151
    dt = 0.1
    t = np.zeros(N)

    x = np.zeros([3,N])
    y = np.zeros([3,N])

    for i in range(N-1):
        dx,y[:,i] = spreadsheet(t[i],x[:,i])
        if t[i]>10.0:
            valve = [0.5,0.5,0.5]
        x[:,i+1] = x[:,i] + dt*dx
        t[i+1] = t[i] + dt

    df0 = pd.DataFrame(y.transpose(),t)
    df1 = pd.DataFrame(x.transpose(),t)
    frames = [df0,df1]
    df = pd.concat(frames,axis = 1)
    df.to_csv(‘example.csv’)

    plt.figure()
    plt.subplot(2,1,1)
    plt.plot(t,x[0,:],’b-’,linewidth=3,label=’h0’)
    plt.plot(t,x[1,:],’r-’,linewidth=3,label=’h1’)
    plt.plot(t,x[2,:],’k-’,linewidth=3,label=’h2’)



General Applications in Scientific Problems 245

    plt.ylabel(‘Tank Level’)
    plt.legend(loc=’best’)
    plt.subplot(2,1,2)
    plt.plot(t,y[0,:],’b-’,linewidth=3,label=’q0’)
    plt.plot(t,y[1,:],’r-’,linewidth=3,label=’q1’)
    plt.plot(t,y[2,:],’k-’,linewidth=3,label=’q2’)
    plt.ylabel(‘Tank Level’)
    plt.legend(loc=’best’)
    plt.show()

The code above produces a .csv file with the simulated outputs 
(“example.csv”) and a graphical output, as shown below.

In order to better visualize the dynamics of the system, the valves 
opening were halved at t = 10 s so as to disturbe the steaty state already 
reached by the 1st tank around t = 4 s. In the following approaches, the 
result of the program is exactly the same regarding the values of the 
states and of the outputs. However, it is shows that the advantage of 
using an object-oriented approach is the clear functionality of different 
components of the code and easy extensibility for more complex systems 
(interacting tanks, more tanks in series, controlling the tanks level, etc).
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Second approach – Improved Functional programming
In this approach, the first tentative in representing the tank system is 
extended by decomposing the single function representing the dynamics 
of the process into subfunctions. One function represents the dynamics 
of each tanks. The second function incorporates this function, coupling 
them and generating the tanks system.

With this approach, the functional programming is more easily 
extensible than the first one. As the dynamics of each tank does not 
change, more tanks can, in a clearer way, be added to the problem in a 
way that is more next to the object-oriented approach.

The function representing the dynamics of each tank is written 
according the following code in Python programming language:
def tank(t,x,qi,valve,A,ce):
        y = ce*valve*np.sqrt(x)
        dx = (qi - y)/A
        return dx,y

This function can be incorporated into another to represent a single 
tank system or even a series of many tanks. The function that incorporates 
the one above and represent the three tank system is the one written 
below. In this function, notice how the subfunction “tank” is called and 
how clearer is this code regarding the readability and understanding of 
what type of structures is the system composed of.
def system_of_tanks(t,x,t_table,q_table,valve,A,ce):
        h0 = x[0]
        h1 = x[1]
        h2 = x[2]
        dx = np.zeros(3)
        y = np.zeros(3)
        
        qi = np.interp(t,t_table,q_table)
        dx[0],y[0] = tank(t,x[0],qi,valve[0],A[0],ce[0])
        
        dx[1],y[1] = tank(t,x[1],y[0],valve[1],A[1],ce[1])
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        dx[2],y[2] = tank(t,x[1],y[1],valve[2],A[2],ce[2])
        
        return dx,y

The rest of the code is exactly the same as depicted for the first 
functional programming approach shown. However, this type of 
programming has clear advantages in comparison with the last one, 
regarding extensibility and readability.

Third approach – Object-Oriented programming
The next approach consists into a big modification of the whole procedure 
of calculating, in order to develop a full object -oriented approach of the 
system under study. It will be clear by the end of this section that this 
procedure is much more flexible and easily extensible than the former 
approaches. 

It is intuitive that the tanks in the system are objects, pertaining to 
a class that defines a generic tank of any cross section and what are the 
dynamics of any tank. Additionally, the inflow source is also an object of 
a generic Source class, that defines any table of data against time given 
as input to a system. The output of the tanks is regulated by valves, which 
are also seen as objects of a generic Valve class.

Any of these classes mentioned above can be seen as a generic Unit, 
with connections which are referred to as Inlet and Inlet. Moreover, the 
generic Unit class pre-defines some methods that are common to the 
subclasses. These methods are the equation method, which defines the 
dynamics of all the units pertaining to a subclass, and an apply state 
function which is used at the end of each simulation step to update the 
states of the unit. The code for the Unit class is written in Python as 
follows:
class Unit:
        def __init__(self):
            self.Inlet = []
            self.Outlet = []
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        def equation(self,t,x):
            return np.array(0),np.array(0)

        def apply_states(self,x):
            y = 0

The classes defining other components of the system are derived from 
this parent class. The first one to be defined is a generic Signal Source 
class, which defines the component which provides a pre-defined signal 
at each time step according a table of time x signal. The code of this class 
is shown below:
from scipy import interpolate
class Source(Unit):
        def __init__(self,t_table,q_table,kind):
            Unit.__init__(self)
            self.q_table = interpolate.interp1d(t_table,q_table,kind)
            self.signal = 0.0
            
        def equation(self,t,x):
            y = self.q_table(t)
            return np.array(0),np.array(y)

        def setInlet(self,objup):
            self.Inlet = objup

        def setOutlet(self,objdown):
            y = self.q_table(0)
            self.setSignal(y)
            self.Outlet = objdown

        def setSignal(self,value):
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            self.signal = value

        def apply_states(self,x,y):
            self.setSignal(y)

This class defines three additional methods, setInlet( ), setOutlet( 
) and setSignal( ) methods. These type of functions are called setter 
methods, for they are used to set an attribute without directly accessing 
it. In Python is not possible to define private methods, so the user should 
be aware which methods are to be directly accessed and which are to 
be accessed using setter methods. In the case of the Inlet and Outlet 
properties, it can be seen that some other procedures are performed when 
the program attempts to update this property. If the property is directly 
updated, such as in the following case:

Signal.Outlet = obj
May not generate directly any errors, but the program may not 

perform as expected, since the procedures calculated using the setter 
methods were bypassed. So, in the program flow it is important to, either 
know which methods should be updated using a setter method, or do 
not use setter methods at all (when possible), and a third option and the 
most robust one is to use a setter method for all properties in a class, so 
no confusion will exist if a property requires to be updated using a setter 
method.

From this class, a FlowSource class is derived and the main difference 
between the parent class and this subclass is an extra property, flow which 
is equal to the signal generated. The code is the following:
class FlowSource(Source):
        def __init__(self,t_table,q_table,kind):
            Source.__init__(self,t_table,q_table,kind)
            self.flow = 0.0

        def setSignal(self,value):
            self.flow = value

This class, a child from the Source class, overrides the constructor 
by calling the Source class constructor and adding a property, flow. The 
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setter method setSignal( ) is overriding to redefine the attribution of 
values to the flow property, instead of the signal property, which is not 
used in this case.

The third class is the Valve, which defines the behavior and 
characteristics of the Valve objects present in the system. These valves 
behaves according Bernoulli equation mentioned at the beginning of 
the section. The opening of the valves is defined using a signal Source 
obj. This is done so as to have more flexibility regarding the control and 
manipulation of the opening of the valves. The Valve class is derived 
from the generic Unit superclass, and defined in Python according the 
following code:
class Valve(Unit):
        def __init__(self,ce,SignalSourceobj):
            Unit.__init__(self)
            self.ce = ce
            self.Pos = SignalSourceobj
            self.flow = 0
            
        def equation(self,t,x):
            ce = self.ce
            Pos = self.Pos.signal
            h = self.Inlet.Height
            y = Pos*ce*np.sqrt(h)
            return np.array(0),np.array(y)

        def setInlet(self,objup):
            ce = self.ce
            Pos = self.Pos.signal
            h = objup.Height
            y = Pos*ce*np.sqrt(h)
            self.Inlet = objup
            self.flow = y
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        def setOutlet(self,objdown):
            self.Outlet = objdown

        def apply_states(self,x,y):
            self.flow = y

The last main physical component of the system to be defined is 
the Tank class, which defines the behavior and properties of the tank 
instances that are present in the process. This class is also a subclass of 
the Unit. The code for this type of component is shown below:
class Tank(Unit):
        def __init__(self,A,Height):
            Unit.__init__(self)
            self.A = A
            self.Height = Height
        
        def equation(self,t,x):
            A = self.A
            qi = self.Inlet.flow
            qout = self.Outlet.flow
            
            dx = (qi - qout)/A

            return np.array(dx),0

        def setInlet(self,objup):
            self.Inlet = objup

        def setOutlet(self,objdown):
            self.Outlet = objdown
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        def apply_states(self,x,y):
            self.Height = x

This is the only class in this system which returns a derivative, instead 
of an algebraic output of an equation or an interpolation. Therefore, the 
time integration scheme has to be implemented so simulate this system, 
according a defined timestep.

The last class, System, is used to join all the instances into a single 
structure, connect them and to simulate the system using a predefined 
time integration scheme. It is used as an initial approach the Forward 
Euler time integration procedure, which is one of the simplest, however 
it lacks stability, therefore being necessary to use small time steps of 
simulation. This integration scheme is specially difficult to use for stiff 
problems.

The class System defines three methods, besides the constructor:
• Add( ). This method is used to collect the instances created 

into a single structure (a Python dictionary in the present case).
• Connect( ): This function is used to connect the instances, i.e 

to set the Inlets and Outlets of the instances in the proper way 
(if the outlet of obj1 is obj2, then the inlet of obj2 is obj1)

• Simulate( ): This method is used to predict the system behavior 
in a defined time horizon, using a time step for the integration 
procedure. The user gives the time step and the amount of steps 
of simulation, and the results are stored as class members.

The code written for this class is the following:
class System:
        def __init__(self):
            self.unit = dict()
            self.t = []
            self.x = []
            self.y = []
            
        def add(self,ID,obj):
            self.unit[ID] = obj
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        def connect(self,ID1,ID2):
            self.unit[ID1].setOutlet(self.unit[ID2])
            self.unit[ID2].setInlet(self.unit[ID1])
            
        def simulate(self,dt,N):
            unit = self.unit
            
            t = np.linspace(0.0,N*dt,N)

            numcolumns = len(unit)
            x = np.zeros([numcolumns,N])
            y = np.zeros([numcolumns,N])
            dx = np.zeros([numcolumns])
            yp = np.zeros([numcolumns])
    
            for i in range(N-1):
                k = 0
                for j in unit:
                    dx[k],yp[k] = unit[j].equation(t[i],x[k,i])
                    k = k + 1
            
                x[:,i+1] = x[:,i]+ dt*dx
                y[:,i+1] = yp

                k = 0
                for j in unit:
                    unit[j].apply_states(x[k,i+1],y[k,i+1])
                    k = k + 1



Object-oriented Modelling for Scientific Computing254

                self.t = t
                self.x = x
                self.y = y

The flow source table, valves signal table, as well as the geometries 
of the tanks and the valves are defined according the following code in 
Python:
tq = [0,100]
q_table = [10,10]

tp = [0,10,15]
pos0_table = [1,0.5,0.5]
pos1_table = [1,0.5,0.5]
pos2_table = [1,0.5,0.5]
    

A = [2,
     2,
     2]
ce = [5,
      4.5,
      4]

Where ‘t_q’ and ‘q_table’ are the table data of the flow source. The 
‘tp’ is the time vector for the definitions of the valves signal sources 
‘pos0_table’, ‘pos1_table’ and ‘pos2_table’. The ‘A’ vector defines the 
cross-section area of the tanks. The vector ‘ce’ stores the values of the 
discharge coefficient of the valves. To define the objects composing the 
system, first it is necessary to create the signal sources, both flow and 
valves signal.
valve0source = Source(tp, pos0_table, ‚zero‘)
valve1source = Source(tp, pos1_table, ‚zero‘)
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valve2source = Source(tp, pos2_table, ‚zero‘)
flowsource = FlowSource(tq, q_table, ‚linear‘)

The argument ‘zero’ is used to define that this type of signal should 
be interpolated using zero-order hold, i.e the last input value is given 
until a new one is presented, when the signal is updated. This type of 
interpolation opposes with, for example, the linear one where the input 
at the current time is a linear interpolation of the two values next to it.

Next, it is defined the tanks and the valves using the specified values 
according the variables mentioned above. The code for these definitions 
is shown below:
tank0 = Tank(A[0],0.0)
valve0 = Valve(ce[0],valve0source)

tank1 = Tank(A[1],0.0)
valve1 = Valve(ce[1],valve1source)
    
tank2 = Tank(A[2],0.0)
valve2 = Valve(ce[2],valve2source)

Finally, the connection of the whole system, including the connection 
of the elements and running the simulation is done through the creation 
of an instance of the System class. To create the System class, the 
constructor is called without arguments, according the following line:
spreadsheet = System()

The following lines of code are used to insert all the created objects 
into a single structured list (a Python dictionary).
spreadsheet.add(‘flowsource, flowsource)
spreadsheet.add(‘tank0, tank0)
spreadsheet.add(‘valve0source, valve0source)
spreadsheet.add(‘valve0, valve0)
spreadsheet.add(‘tank1’, tank1)
spreadsheet.add(‘valve1source’, valve1source)
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spreadsheet.add(‘valve1’, valve1)
spreadsheet.add(‘tank2’, tank2)
spreadsheet.add(‘valve2source’, valve2source)
spreadsheet.add(‘valve2’, valve2)

Next the outlet and inlet of the element have to be connected according 
the process structure using the connect( ) method of the spreadsheet 
instance object. The following lines of code are used to connect the 
instances.
spreadsheet.connect(‘flowsource’, ‘tank0’)
spreadsheet.connect(‘tank0’, ‘valve0’)
spreadsheet.connect(‘valve0’, ‘tank1’)
spreadsheet.connect(‘tank1’, ‘valve1’)
spreadsheet.connect(‘valve1’, ‘tank2’)
spreadsheet.connect(‘tank2’, ‘valve2’)

The simulation can be performed by calling the simulate( ) method 
of the spreadsheet instance object, with the timestep and the number of 
steps as input arguments to the function, as shown in the following code:
N = 150
dt = 0.1
spreadsheet.simulate(dt,N)

x = spreadsheet.x
y = spreadsheet.y
t = spreadsheet.t

One major advantage of the object-oriented programming is shown 
in the following case, where the whole system is rearranged in a new 
configuration.

Advantages of the object-oriented programming –  
rearranging the Tank system
In this section, the same program used before is used and expanded in 
order to model a new system of Tanks, according the following figure:
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Figure 11: Rearranged Tank system.

In this new configuration, a new source is added, and the sum of the 
contributions of the first two tanks flow to the third tank. The sum of the 
contributions can be done by adding a new class to the System, which is 
called Joint. The code of the new class is shown below:
class Joint(Unit):
        def __init__(self):
            Unit.__init__(self)
            self.flow = 0.0
            
        def equation(self,t,x):
            y = 0
            for i in self.Inlet:
                y = y + i.flow
            self.flow = y
            return np.array(0),np.array(y)

        def setInlet(self,objup):
            self.Inlet.append(objup)
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            y = 0
            for i in self.Inlet:
                y = y + i.flow
            self.flow = y

        def setOutlet(self,objdown):
            self.Outlet = objdown

        def apply_states(self,x,y):
            self.flow = y

The advantage of the object-oriented approach is that no modifications 
on the previously developed objects are to be performed. An instance of 
the Joint class has to be created and connections are changed in such a 
way that it reflects the new system under interest. The creation of this 
instance is done according the following code:
joint = Joint()

Which defines the object ‘joint’. Additionally, there is an extra flow 
source which feeds the Tank 2. The definition of this object is done 
according the following code:
flowsource1 = FlowSource(tq,q_table,’linear’)

The spreadsheet object is redefined according the code below:
spreadsheet = System()
spreadsheet.add(‘flowsource0’,flowsource0)
spreadsheet.add(‘flowsource1’,flowsource1)
spreadsheet.add(‘tank0’,tank0)
spreadsheet.add(‘valve0source’,valve0source)
spreadsheet.add(‘joint’,joint)
spreadsheet.add(‘valve0’,valve0)
spreadsheet.add(‘tank1’,tank1)
spreadsheet.add(‘valve1source’,valve1source)
spreadsheet.add(‘valve1’,valve1)
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spreadsheet.add(‘tank2’,tank2)
spreadsheet.add(‘valve2source’,valve2source)
spreadsheet.add(‘valve2’,valve2)

spreadsheet.connect(‘flowsource0’,’tank0’)
spreadsheet.connect(‘flowsource1’,’tank1’)
spreadsheet.connect(‘tank0’,’valve0’)
spreadsheet.connect(‘valve0’,’joint’)
spreadsheet.connect(‘tank1’,’valve1’)
spreadsheet.connect(‘valve1’,’joint’)
spreadsheet.connect(‘joint’,’tank2’)
spreadsheet.connect(‘tank2’,’valve2’)

The rest of the code remains the same. New configurations of the 
system can be tested without deep modification of the code. The object-
oriented approach allows the definition of different process flowsheets by 
reusing the same classes, rearranged according the necessity. This same 
procedure would not be possible using the functional programming, 
where the main function needs to be rewritten in order to reflect the new 
conditions under study.

FURTHER READING
In this section, we present some useful literature for those interested in 
extending their knowledge in Scientific Computing, Object-Oriented 
programming and the application of Object-Oriented programming in 
Scientific Computing.
Gladwell, I; Nagy, J. G; Ferguson Jr., W. E. (2007) Introduction to 
Scientific Computing. Available in: http://www.mathcs.emory.edu/~ale/
NAbook_Aug_2008.pdf
This book provides principles on scientific computing, with many 
examples on basic mathematical algorithms on solving linear systems, 
differentiation, integration and other methods. Application of such 
methods using Matlab is done all over the book, providing the reader 
clear insight without requiring high expertise with Numerical Methods.
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Bindel, D; Goodman, J. (2009) Principles of Scientific Computing. 
Available in: http://www.cs.nyu.edu/courses/spring09/G22.2112-001/
book/book.pdf
This book covers numerical methods used in scientific computing 
in a broad sense, from analysing sources of errors in computation, 
linear algebra methods and algorithms up to nonlinear equations and 
optimization, dynamics and differential equations finishing with Monte 
Carlo method applications. Each chapter provides exercises so the reader 
can take deep insight into every concept presented.
Heath, M. T. (2002) Scientific Computing: an introductory survey. 2nd ed. 
McGraw Hill.
Besides covering numerical methods used in scientific computing, 
softwares that can be used are presented by the author, with historical 
description and further reading on each topic along the book. Three 
chapters are dedicated to numerical methods used in solving differential 
problems: the first one describes initial value problems, the second one 
boundary value problems and the last one the use of numerical methods 
for solving partial differential equations.
Johansson, R. (2016) Introduction to Scientific Computing in Python. 
Available online.
The author presents, in a very simple and useful manner the way Python 
as a programming language can be used to solve problems in numerical 
computation. The first chapter introduces Python from the very beginning, 
showing what is it, its features and how to obtain. Further chapters 
present different libraries in Python useful for Scientific Computing such 
as Scipy, Numpy and Sympy. The author also explain how Python can 
be integrated with other programming languages (C and Fortran) , tools 
for high-performance computing and how to control software versions.
Pitt-Francis, J; Whiteley, J. (2012) Guide to Scientific Computing in C++. 
Springer-Editor London. ISBN: 978-1-4471-2736-9. DOI: 10.1007/978-
1-4471-2736-9
The authors present essential principles on using object-oriented C++ 
programming for scientific computing. Many examples are given to 
support the theory described and to help the reader to familiarize himself 
with the concepts presented. Special features of the language are also 
described, such as parallel computing using MPI. A brief introduction 
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to the language is first presented, and later more advanced features are 
examined, such as templates and exceptions.
Yang, D. (2001) C++ and Object-Oriented Numeric Computing for 
Scientists and Engineers. Springer New York. DOI: 10.1007/978-1-
4613-0189-9. ISBN: 978-1-4613-0189-9
Basic concepts of C++  programming language, and object oriented 
numeric computation for students and professionals are described in 
this easy to read and complete book. Examples are shown independent 
of the operating system. At the end, special features not present in 
other languages used for scientific computing are presented, such as 
the preconditioned conjugate gradient (CG) method and generalized 
minimum residual (GMRES) method.
Henderson M. E; Anderson C. R; Lyons S. L. (1999) Object Oriented 
Methods for Interoperable Scientific and Engineering Computing 
(Proceedings in Applied Mathermatics, 99). Society for Industrial & 
Applied Mathematics,U.S. (29. September 1999)
The book is a compilation of the papers presented at the October 
1998 SIAM Workshop on Object Oriented Methods for Interoperable 
Scientific. It covers different topics and problems related with designing 
and implementing computational tools for science and engineering.
Langtangen, H. P. (2016) A Primer of Scientific Computing with Python. 
Springer Berlin Heidelberg. ISBN: 978-3-662-49887-3
The book covers basic principles of Python programming language, and 
advanced features with many applications in scientific computing and 
numerical methods. Some examples are shown from the perspective 
of first, functional approach up to a full object-oriented programming 
approach. The language is concise, easy to understand and provides the 
necessary information to develop good knowledge with Python language.
Kiusalaas, J. (2013) Numerical methods in engineering with Python 3. 
Cambridge University Press. New York.
The main focus of the book is to teach numerical methods. Nonetheless, 
applications in Python shows how to use existent tools to solve most of 
the common problems present in engineering applications. 
Fritzson, P. (2004) Principles of Object Oriented Modeling and Simulation 
with Modelica 2.1 Wiley-IEEE Press, 2004.
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Modelica is a high-level language developed specifically to solve 
mathematical problems represented through models. The book above 
describes from the first principles up to advanced features how Modelica 
and its object-oriented features can be used to solve problems in biology, 
physics, mathematics and engineering using simple but precise tools 
present in this special language.
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